est.SBA function

Estimate graphons based on Stochastic Blockmodel approximation

Estimate graphons based on Stochastic Blockmodel approximation

est.SBA takes a 2-stage approach for estimating graphons based on exchangeable random graph models. First, it finds a Stochastic Blockmodel Approximation (SBA) of the graphon. Then, it uses clustering information to estimate graphon using a consistent histogram estimator.

est.SBA(A, delta = 0.5)

Arguments

  • A: either

    • Case 1.: an (n×n)(n\times n) binary adjacency matrix, or
    • Case 2.: a vector containing multiple of (n×n)(n\times n) binary adjacency matrices.
  • delta: a precision parameter larger than 0.

Returns

a named list containing

  • H: a (K×K)(K\times K) matrix fo 3D histogram.
  • P: an (n×n)(n\times n) corresponding probability matrix.
  • B: a length-KK list where each element is a vector of nodes/indices for each cluster.

Examples

## generate a graphon of type No.6 with 3 clusters W = gmodel.preset(3,id=6) ## create a probability matrix for 100 nodes graphW = gmodel.block(W,n=100) P = graphW$P ## draw 17 observations from a given probability matrix A = gmodel.P(P,rep=17) ## run SBA algorithm with different deltas (0.2,0.5,0.8) res2 = est.SBA(A,delta=0.2) res3 = est.SBA(A,delta=0.5) res4 = est.SBA(A,delta=0.8) ## compare true probability matrix and estimated ones opar = par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") image(P); title("original P") image(res2$P); title("SBA with delta=0.2") image(res3$P); title("SBA with delta=0.5") image(res4$P); title("SBA with delta=0.8") par(opar)

References

Rdpack::insert_ref(key="Airoldi2013",package="graphon")

Rdpack::insert_ref(key="chan2014",package="graphon")

See Also

est.LG

  • Maintainer: Kisung You
  • License: MIT + file LICENSE
  • Last published: 2021-08-13

Useful links