est.completion function

Estimate graphons based on matrix completion scheme

Estimate graphons based on matrix completion scheme

est.completion adopts a matrix completion scheme, which is common in missing data or matrix reconstruction studies. When given a multiple of, or a single observation, we consider non-existent edges as missing entries and apply the completion scheme. See OptSpace for a more detailed introduction.

est.completion( A, rank = NA, tolerance = 0.001, maxiter = 20, progress = FALSE, adjust = TRUE )

Arguments

  • A: either

    • Case 1.: an (n×n)(n\times n) binary adjacency matrix, or
    • Case 2.: a list containing multiple of (n×n)(n\times n) binary adjacency matrices.
  • rank: an estimated rank condition for the matrix; NA for automatic guessing of a rank, or a positive integer for a user-supplied rank assumption.

  • tolerance: a tolerance level for singular value thresholding from OptSpace method.

  • maxiter: the number of maximum iterations for OptSpace method.

  • progress: a logical value; FALSE for not showing intermediate flags during the process, TRUE otherwise.

  • adjust: a logical value; TRUE to ignore a guessed rank and set it as 2 upon numerical errors, FALSE to stop the code.

Returns

an (n×n)(n\times n) corresponding probability matrix.

Examples

## generate a graphon of type No.5 with 3 clusters W = gmodel.preset(3,id=5) ## create a probability matrix for 100 nodes graphW = gmodel.block(W,n=100) P = graphW$P ## draw 10 observations from a given probability matrix A = gmodel.P(P,rep=10) ## apply the method res_r3 = est.completion(A,rank=3) # use rank-3 approximation res_r9 = est.completion(A,rank=9) # use rank-9 approximation res_rN = est.completion(A,adjust=FALSE) # stop the code if guess works poorly ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(res_r3, main="rank 3") image(res_r9, main="rank 9") image(res_rN, main="rank is guessed") par(opar)

References

Rdpack::insert_ref(key="Keshavan2010",package="graphon")

  • Maintainer: Kisung You
  • License: MIT + file LICENSE
  • Last published: 2021-08-13

Useful links