DcLbm function

Degree Corrected Latent Block Model for bipartite graph class

Degree Corrected Latent Block Model for bipartite graph class

An S4 class to represent a degree corrected stochastic block model for co_clustering of bipartite graph. Such model can be used to cluster graph vertex, and model a bipartite graph adjacency matrix XX with the following generative model : [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZirM(1,πr)[REMOVEME2] Z_i^r \sim \mathcal{M}(1,\pi^r) [REMOVE_ME_2]

[REMOVE_ME]ZjcM(1,πc)[REMOVEME2] Z_j^c \sim \mathcal{M}(1,\pi^c) [REMOVE_ME_2]

[REMOVE_ME]θklExponential(p)[REMOVEME2] \theta_{kl} \sim Exponential(p) [REMOVE_ME_2]

[REMOVE_ME]γirU(Sk)[REMOVEME2] \gamma_i^r\sim \mathcal{U}(S_k) [REMOVE_ME_2]

[REMOVE_ME]γicU(Sl)[REMOVEME2] \gamma_i^c\sim \mathcal{U}(S_l) [REMOVE_ME_2]

[REMOVE_ME]XijZikcZjlr=1P(γirθklγjc)[REMOVEME2] X_{ij}|Z_{ik}^cZ_{jl}^r=1 \sim \mathcal{P}(\gamma_i^r\theta_{kl}\gamma_j^c) [REMOVE_ME_2]

The individuals parameters γir,γjc\gamma_i^r,\gamma_j^c allow to take into account the node degree heterogeneity. These parameters have uniform priors over simplex SkS_k. These classes mainly store the prior parameters value α,p\alpha,p of this generative model. The DcLbm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DcLbmPrior-class must be sued when fitting a CombinedModels-class. class

DcLbmPrior(p = NaN) DcLbm(alpha = 1, p = NaN)

Arguments

  • p: Exponential prior parameter (default to Nan, in this case p will be estimated from data as the average intensities of X)
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a DcLbmPrior-class

a DcLbm-class object

Description

An S4 class to represent a degree corrected stochastic block model for co_clustering of bipartite graph. Such model can be used to cluster graph vertex, and model a bipartite graph adjacency matrix XX with the following generative model :

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZirM(1,πr) Z_i^r \sim \mathcal{M}(1,\pi^r) ZjcM(1,πc) Z_j^c \sim \mathcal{M}(1,\pi^c) θklExponential(p) \theta_{kl} \sim Exponential(p) γirU(Sk) \gamma_i^r\sim \mathcal{U}(S_k) γicU(Sl) \gamma_i^c\sim \mathcal{U}(S_l) XijZikcZjlr=1P(γirθklγjc) X_{ij}|Z_{ik}^cZ_{jl}^r=1 \sim \mathcal{P}(\gamma_i^r\theta_{kl}\gamma_j^c)

The individuals parameters γir,γjc\gamma_i^r,\gamma_j^c allow to take into account the node degree heterogeneity. These parameters have uniform priors over simplex SkS_k. These classes mainly store the prior parameters value α,p\alpha,p of this generative model. The DcLbm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DcLbmPrior-class must be sued when fitting a CombinedModels-class.

Examples

DcLbmPrior() DcLbmPrior(p = 0.7) DcLbm() DcLbm(p = 0.7)

See Also

DcLbmFit-class, DcLbmPath-class

Other DlvmModels: CombinedModels, DcSbm, DiagGmm, DlvmPrior-class, Gmm, Lca, MoM, MoR, MultSbm, Sbm, greed()