DcSbm function

Degree Corrected Stochastic Block Model Prior class

Degree Corrected Stochastic Block Model Prior class

An S4 class to represent a Degree Corrected Stochastic Block Model. Such model can be used to cluster graph vertex, and model a square adjacency matrix XX with the following generative model : [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZiM(1,π)[REMOVEME2] Z_i \sim \mathcal{M}(1,\pi) [REMOVE_ME_2]

[REMOVE_ME]θklExponential(p)[REMOVEME2] \theta_{kl} \sim Exponential(p) [REMOVE_ME_2]

[REMOVE_ME]γi+,γiU(Sk)[REMOVEME2] \gamma_i^+,\gamma_i^- \sim \mathcal{U}(S_k) [REMOVE_ME_2]

[REMOVE_ME]XijZikZjl=1P(γi+θklγj)[REMOVEME2] X_{ij}|Z_{ik}Z_{jl}=1 \sim \mathcal{P}(\gamma_i^+\theta_{kl}\gamma_j^-) [REMOVE_ME_2]

The individuals parameters γi+,γi\gamma_i^+,\gamma_i^- allow to take into account the node degree heterogeneity. These parameters have uniform priors over the simplex SkS_k ie. i:zik=1γi+=1\sum_{i:z_{ik}=1}\gamma_i^+=1. These classes mainly store the prior parameters value α,p\alpha,p of this generative model. The DcSbm-class must be used when fitting a simple Degree Corrected Stochastic Block Model whereas the DcSbmPrior-class must be used when fitting a CombinedModels-class. class

DcSbmPrior(p = NaN, type = "guess") DcSbm(alpha = 1, p = NaN, type = "guess")

Arguments

  • p: Exponential prior parameter (default to NaN, in this case p will be estimated from data as the mean connection probability)
  • type: define the type of networks (either "directed", "undirected" or "guess", default to "guess")
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a DcSbmPrior-class object

a DcSbm-class object

Description

An S4 class to represent a Degree Corrected Stochastic Block Model. Such model can be used to cluster graph vertex, and model a square adjacency matrix XX with the following generative model :

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZiM(1,π) Z_i \sim \mathcal{M}(1,\pi) θklExponential(p) \theta_{kl} \sim Exponential(p) γi+,γiU(Sk) \gamma_i^+,\gamma_i^- \sim \mathcal{U}(S_k) XijZikZjl=1P(γi+θklγj) X_{ij}|Z_{ik}Z_{jl}=1 \sim \mathcal{P}(\gamma_i^+\theta_{kl}\gamma_j^-)

The individuals parameters γi+,γi\gamma_i^+,\gamma_i^- allow to take into account the node degree heterogeneity. These parameters have uniform priors over the simplex SkS_k ie. i:zik=1γi+=1\sum_{i:z_{ik}=1}\gamma_i^+=1. These classes mainly store the prior parameters value α,p\alpha,p of this generative model. The DcSbm-class must be used when fitting a simple Degree Corrected Stochastic Block Model whereas the DcSbmPrior-class must be used when fitting a CombinedModels-class.

Examples

DcSbmPrior() DcSbmPrior(type = "undirected") DcSbm() DcSbm(type = "undirected")

See Also

DcSbmFit-class, DcSbmPath-class

Other DlvmModels: CombinedModels, DcLbm, DiagGmm, DlvmPrior-class, Gmm, Lca, MoM, MoR, MultSbm, Sbm, greed()