DiagGmm function

Diagonal Gaussian Mixture Model Prior description class

Diagonal Gaussian Mixture Model Prior description class

An S4 class to represent a multivariate diagonal Gaussian mixture model. The model corresponds to the following generative model: [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZiM(1,π)[REMOVEME2] Z_i \sim \mathcal{M}(1,\pi) [REMOVE_ME_2]

[REMOVE_ME]λk(d)G(κ,β)[REMOVEME2] \lambda_k^{(d)} \sim \mathcal{G}(\kappa,\beta) [REMOVE_ME_2]

[REMOVE_ME]μk(d)N(μ,(τλk)1)[REMOVEME2] \mu_k^{(d)} \sim \mathcal{N}(\mu,(\tau \lambda_k)^{-1}) [REMOVE_ME_2]

[REMOVE_ME]Xi.Zik=1N(μk,λk1)[REMOVEME2] X_{i.}|Z_{ik}=1 \sim \mathcal{N}(\mu_k,\lambda_{k}^{-1}) [REMOVE_ME_2]

with G(κ,β)\mathcal{G}(\kappa,\beta) the Gamma distribution with shape parameter κ\kappa and rate parameter β\beta. These classes mainly store the prior parameters value (α,τ,κβ,μ\alpha,\tau,\kappa\beta,\mu) of this generative model. The DiagGmm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class must be sued when fitting a CombinedModels-class. class

DiagGmmPrior(tau = 0.01, kappa = 1, beta = NaN, mu = NaN) DiagGmm(alpha = 1, tau = 0.01, kappa = 1, beta = NaN, mu = NaN)

Arguments

  • tau: Prior parameter (inverse variance), (default 0.01)
  • kappa: Prior parameter (gamma shape), (default to 1)
  • beta: Prior parameter (gamma rate), (default to NaN, in this case beta will be estimated from data as 0.1 time the mean of X columns variances)
  • mu: Prior for the means (vector of size D), (default to NaN, in this case mu will be estimated from data as the mean of X)
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a DiagGmmPrior-class object

a DiagGmm-class object

Description

An S4 class to represent a multivariate diagonal Gaussian mixture model. The model corresponds to the following generative model:

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZiM(1,π) Z_i \sim \mathcal{M}(1,\pi) λk(d)G(κ,β) \lambda_k^{(d)} \sim \mathcal{G}(\kappa,\beta) μk(d)N(μ,(τλk)1) \mu_k^{(d)} \sim \mathcal{N}(\mu,(\tau \lambda_k)^{-1}) Xi.Zik=1N(μk,λk1) X_{i.}|Z_{ik}=1 \sim \mathcal{N}(\mu_k,\lambda_{k}^{-1})

with G(κ,β)\mathcal{G}(\kappa,\beta) the Gamma distribution with shape parameter κ\kappa and rate parameter β\beta. These classes mainly store the prior parameters value (α,τ,κβ,μ\alpha,\tau,\kappa\beta,\mu) of this generative model. The DiagGmm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class must be sued when fitting a CombinedModels-class.

Examples

DiagGmmPrior() DiagGmmPrior(tau = 0.1) DiagGmm() DiagGmm(tau = 0.1)

References

Bertoletti, Marco & Friel, Nial & Rastelli, Riccardo. (2014). Choosing the number of clusters in a finite mixture model using an exact Integrated Completed Likelihood criterion. METRON. 73. 10.1007/s40300-015-0064-5. #'

See Also

DiagGmmFit-class, DiagGmmPath-class

Other DlvmModels: CombinedModels, DcLbm, DcSbm, DlvmPrior-class, Gmm, Lca, MoM, MoR, MultSbm, Sbm, greed()