Diagonal Gaussian Mixture Model Prior description class
Diagonal Gaussian Mixture Model Prior description class
An S4 class to represent a multivariate diagonal Gaussian mixture model. The model corresponds to the following generative model: [REMOVE_ME]π∼Dirichlet(α)[REMOVEME2]
[REMOVE_ME]Zi∼M(1,π)[REMOVEME2]
[REMOVE_ME]λk(d)∼G(κ,β)[REMOVEME2]
[REMOVE_ME]μk(d)∼N(μ,(τλk)−1)[REMOVEME2]
[REMOVE_ME]Xi.∣Zik=1∼N(μk,λk−1)[REMOVEME2]
with G(κ,β) the Gamma distribution with shape parameter κ and rate parameter β. These classes mainly store the prior parameters value (α,τ,κβ,μ) of this generative model. The DiagGmm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class must be sued when fitting a CombinedModels-class.
class
DiagGmmPrior(tau =0.01, kappa =1, beta =NaN, mu =NaN)DiagGmm(alpha =1, tau =0.01, kappa =1, beta =NaN, mu =NaN)
with G(κ,β) the Gamma distribution with shape parameter κ and rate parameter β. These classes mainly store the prior parameters value (α,τ,κβ,μ) of this generative model. The DiagGmm-class must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class must be sued when fitting a CombinedModels-class.
Bertoletti, Marco & Friel, Nial & Rastelli, Riccardo. (2014). Choosing the number of clusters in a finite mixture model using an exact Integrated Completed Likelihood criterion. METRON. 73. 10.1007/s40300-015-0064-5. #'