Lca function

Latent Class Analysis Model Prior class

Latent Class Analysis Model Prior class

An S4 class to represent a Latent Class Analysis model Such model can be used to cluster a data.frame XX with several columns of factors with the following generative model : [REMOVE_ME]πDirichlet(α),[REMOVEME2] \pi \sim \textrm{Dirichlet}(\alpha), [REMOVE_ME_2]

[REMOVE_ME]k,j,θkjDirichletdj(β),[REMOVEME2] \forall k, \forall j, \quad \theta_{kj} \sim \textrm{Dirichlet}_{d_j}(\beta), [REMOVE_ME_2]

[REMOVE_ME]ZiMK(1,π),[REMOVEME2] Z_i \sim \mathcal{M}_K(1,\pi), [REMOVE_ME_2]

[REMOVE_ME]j=1,,p,XijZik=1Mdj(1,θkj),[REMOVEME2] \forall j=1, \ldots, p, \quad X_{ij}|Z_{ik}=1 \sim \mathcal{M}_{d_j}(1, \theta_{kj}), [REMOVE_ME_2]

These classes mainly store the prior parameters value (α,β\alpha,\beta) of this generative model. The Lca-class must be used when fitting a simple Latent Class Analysis whereas the LcaPrior-class must be used when fitting a CombinedModels-class. class

LcaPrior(beta = 1) Lca(alpha = 1, beta = 1)

Arguments

  • beta: Dirichlet prior parameter for all the categorical feature (default to 1)
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a LcaPrior-class object

a Lca-class object

Description

An S4 class to represent a Latent Class Analysis model Such model can be used to cluster a data.frame XX with several columns of factors with the following generative model :

πDirichlet(α), \pi \sim \textrm{Dirichlet}(\alpha), k,j,θkjDirichletdj(β), \forall k, \forall j, \quad \theta_{kj} \sim \textrm{Dirichlet}_{d_j}(\beta), ZiMK(1,π), Z_i \sim \mathcal{M}_K(1,\pi), j=1,,p,XijZik=1Mdj(1,θkj), \forall j=1, \ldots, p, \quad X_{ij}|Z_{ik}=1 \sim \mathcal{M}_{d_j}(1, \theta_{kj}),

These classes mainly store the prior parameters value (α,β\alpha,\beta) of this generative model. The Lca-class must be used when fitting a simple Latent Class Analysis whereas the LcaPrior-class must be used when fitting a CombinedModels-class.

Examples

LcaPrior() LcaPrior(beta = 0.5) Lca() Lca(beta = 0.5)

See Also

LcaFit-class, LcaPath-class

Other DlvmModels: CombinedModels, DcLbm, DcSbm, DiagGmm, DlvmPrior-class, Gmm, MoM, MoR, MultSbm, Sbm, greed()