MoM function

Mixture of Multinomial Model Prior description class

Mixture of Multinomial Model Prior description class

An S4 class to represent a Mixture of Multinomial model. Such model can be used to cluster a data matrix XX with the following generative model : [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZiM(1,π)[REMOVEME2] Z_i \sim \mathcal{M}(1,\pi) [REMOVE_ME_2]

[REMOVE_ME]θkDirichlet(β)[REMOVEME2] \theta_{k} \sim Dirichlet(\beta) [REMOVE_ME_2]

[REMOVE_ME]Xi.Zik=1M(Li,θk)[REMOVEME2] X_{i.}|Z_{ik}=1 \sim \mathcal{M}(L_i,\theta_{k}) [REMOVE_ME_2]

With Li=d=1DXidL_i=\sum_d=1^DX_{id}. These classes mainly store the prior parameters value (α,β\alpha,\beta) of this generative model. The MoM-class must be used when fitting a simple Mixture of Multinomials whereas the MoMPrior-class must be sued when fitting a CombinedModels-class. class

MoMPrior(beta = 1) MoM(alpha = 1, beta = 1)

Arguments

  • beta: Dirichlet over vocabulary prior parameter (default to 1)
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a MoMPrior-class object

a MoM-class object

Description

An S4 class to represent a Mixture of Multinomial model. Such model can be used to cluster a data matrix XX with the following generative model :

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZiM(1,π) Z_i \sim \mathcal{M}(1,\pi) θkDirichlet(β) \theta_{k} \sim Dirichlet(\beta) Xi.Zik=1M(Li,θk) X_{i.}|Z_{ik}=1 \sim \mathcal{M}(L_i,\theta_{k})

With Li=d=1DXidL_i=\sum_d=1^DX_{id}. These classes mainly store the prior parameters value (α,β\alpha,\beta) of this generative model. The MoM-class must be used when fitting a simple Mixture of Multinomials whereas the MoMPrior-class must be sued when fitting a CombinedModels-class.

Examples

MoMPrior() MoMPrior(beta = 0.5) MoM() MoM(beta = 0.5)

See Also

MoMFit-class, MoMPath-class

Other DlvmModels: CombinedModels, DcLbm, DcSbm, DiagGmm, DlvmPrior-class, Gmm, Lca, MoR, MultSbm, Sbm, greed()