MoR function

Multivariate mixture of regression Prior model description class

Multivariate mixture of regression Prior model description class

An S4 class to represent a multivariate mixture of regression model. The model follows minka-linear . The model corresponds to the following generative model: [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZiM(1,π)[REMOVEME2] Z_i \sim \mathcal{M}(1,\pi) [REMOVE_ME_2]

[REMOVE_ME]VkW(ε1,n0)[REMOVEME2] V_k \sim \mathcal{W}(\varepsilon^{-1},n_0) [REMOVE_ME_2]

[REMOVE_ME]AkMN(0,(Vk)1,τXX)[REMOVEME2] A_k \sim \mathcal{MN}(0,(V_k)^{-1},\tau XX^\top) [REMOVE_ME_2]

[REMOVE_ME]Yi.Xi.,Ak,Zik=1N(Akxi.,Vk1)[REMOVEME2] Y_{i.}|X_{i.}, A_k, Z_{ik}=1 \sim \mathcal{N}(A_k x_{i.},V_{k}^{-1}) [REMOVE_ME_2]

with W(ϵ1,n0)\mathcal{W}(\epsilon^{-1},n_0) the Wishart distribution and MN\mathcal{MN} the matrix-normal distribution. The MoR-class must be used when fitting a simple Mixture of Regression whereas the MoRPrior-class must be used when fitting a CombinedModels-class. class

MoRPrior(formula, tau = 0.001, N0 = NaN, epsilon = as.matrix(NaN)) MoR(formula, alpha = 1, tau = 0.1, N0 = NaN, epsilon = as.matrix(NaN))

Arguments

  • formula: a formula that describe the linear model to use
  • tau: Prior parameter (inverse variance) default 0.001
  • N0: Prior parameter (default to NaN, in this case N0 will be fixed equal to the number of columns of Y.)
  • epsilon: Covariance matrix prior parameter (default to NaN, in this case epsilon will be fixed to a diagonal variance matrix equal to 0.1 time the variance of the regression residuals with only one cluster.)
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a MoRPrior-class object

a MoR-class object

Description

An S4 class to represent a multivariate mixture of regression model. The model follows minka-linear . The model corresponds to the following generative model:

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZiM(1,π) Z_i \sim \mathcal{M}(1,\pi) VkW(ε1,n0) V_k \sim \mathcal{W}(\varepsilon^{-1},n_0) AkMN(0,(Vk)1,τXX) A_k \sim \mathcal{MN}(0,(V_k)^{-1},\tau XX^\top) Yi.Xi.,Ak,Zik=1N(Akxi.,Vk1) Y_{i.}|X_{i.}, A_k, Z_{ik}=1 \sim \mathcal{N}(A_k x_{i.},V_{k}^{-1})

with W(ϵ1,n0)\mathcal{W}(\epsilon^{-1},n_0) the Wishart distribution and MN\mathcal{MN} the matrix-normal distribution. The MoR-class must be used when fitting a simple Mixture of Regression whereas the MoRPrior-class must be used when fitting a CombinedModels-class.

Examples

MoRPrior(y ~ x1 + x2) MoRPrior(y ~ x1 + x2, N0 = 100) MoRPrior(cbind(y1, y2) ~ x1 + x2, N0 = 100) MoR(y ~ x1 + x2) MoR(y ~ x1 + x2, N0 = 100) MoR(cbind(y1, y2) ~ x1 + x2, N0 = 100)

See Also

MoRFit-class, MoRPath-class

Other DlvmModels: CombinedModels, DcLbm, DcSbm, DiagGmm, DlvmPrior-class, Gmm, Lca, MoM, MultSbm, Sbm, greed()