Sbm function

Stochastic Block Model Prior class

Stochastic Block Model Prior class

An S4 class to represent a Stochastic Block Model. Such model can be used to cluster graph vertex, and model a square adjacency matrix XX with the following generative model : [REMOVE_ME]πDirichlet(α)[REMOVEME2] \pi \sim Dirichlet(\alpha) [REMOVE_ME_2]

[REMOVE_ME]ZiM(1,π)[REMOVEME2] Z_i \sim \mathcal{M}(1,\pi) [REMOVE_ME_2]

[REMOVE_ME]θklBeta(a0,b0)[REMOVEME2] \theta_{kl} \sim Beta(a_0,b_0) [REMOVE_ME_2]

[REMOVE_ME]XijZikZjl=1B(θkl)[REMOVEME2] X_{ij}|Z_{ik}Z_{jl}=1 \sim \mathcal{B}(\theta_{kl}) [REMOVE_ME_2]

These classes mainly store the prior parameters value α,a0,b0\alpha,a_0,b_0 of this generative model. The Sbm-class must be used when fitting a simple Sbm whereas the SbmPrior-class must be used when fitting a CombinedModels-class. class

SbmPrior(a0 = 1, b0 = 1, type = "guess") Sbm(alpha = 1, a0 = 1, b0 = 1, type = "guess")

Arguments

  • a0: Beta prior parameter over links (default to 1)
  • b0: Beta prior parameter over no-links (default to 1)
  • type: define the type of networks (either "directed", "undirected" or "guess", default to "guess"), for undirected graphs the adjacency matrix is supposed to be symmetric.
  • alpha: Dirichlet prior parameter over the cluster proportions (default to 1)

Returns

a SbmPrior-class object

a Sbm-class object

Description

An S4 class to represent a Stochastic Block Model. Such model can be used to cluster graph vertex, and model a square adjacency matrix XX with the following generative model :

πDirichlet(α) \pi \sim Dirichlet(\alpha) ZiM(1,π) Z_i \sim \mathcal{M}(1,\pi) θklBeta(a0,b0) \theta_{kl} \sim Beta(a_0,b_0) XijZikZjl=1B(θkl) X_{ij}|Z_{ik}Z_{jl}=1 \sim \mathcal{B}(\theta_{kl})

These classes mainly store the prior parameters value α,a0,b0\alpha,a_0,b_0 of this generative model. The Sbm-class must be used when fitting a simple Sbm whereas the SbmPrior-class must be used when fitting a CombinedModels-class.

Examples

Sbm() SbmPrior() SbmPrior(type = "undirected") Sbm() Sbm(type = "undirected")

References

Nowicki, Krzysztof and Tom A B Snijders (2001). “Estimation and prediction for stochastic block structures”. In:Journal of the American statistical association 96.455, pp. 1077–1087

See Also

greed

SbmFit-class,SbmPath-class

Other DlvmModels: CombinedModels, DcLbm, DcSbm, DiagGmm, DlvmPrior-class, Gmm, Lca, MoM, MoR, MultSbm, greed()