TPLNormal function

Three Parameter Log Normal Distribution

Three Parameter Log Normal Distribution

Density, cumulative distribution, quantile functions and random number generation for the 3 parameter log normal distribution with the location parameter mu, scale sigma (which corresponds to standard deviation in normal distribution) and shifting parameter shift.

dtplnorm(q, mu = 0, sigma = 1, shift = 0, log = FALSE) ptplnorm(q, mu = 0, sigma = 1, shift = 0) qtplnorm(p, mu = 0, sigma = 1, shift = 0) rtplnorm(n = 1, mu = 0, sigma = 1, shift = 0)

Arguments

  • q: vector of quantiles.
  • mu: vector of location parameters (means).
  • sigma: vector of scale parameters.
  • shift: vector of shift parameters.
  • log: if TRUE, then probabilities are returned in logarithms.
  • p: vector of probabilities.
  • n: number of observations. Should be a single number.

Returns

Depending on the function, various things are returned (usually either vector or scalar):

  • dtplnorm returns the density function value for the provided parameters.
  • ptplnorm returns the value of the cumulative function for the provided parameters.
  • qtplnorm returns quantiles of the distribution. Depending on what was provided in p, mu and sigma, this can be either a vector or a matrix, or an array.
  • rtplnorm returns a vector of random variables generated from the tplnorm distribution. Depending on what was provided in mu and sigma, this can be either a vector or a matrix or an array.

Details

The distribution has the following density function:

f(x) = 1/(x-a) 1/sqrt(2 pi) exp(-(log(x-a)-mu)^2 / (2 sigma^2))

Both ptplnorm and qtplnorm are returned for the lower tail of the distribution.

The function is based on the lnorm functions from stats package, introducing the shift parameter.

Examples

x <- dtplnorm(c(-1000:1000)/200, 0, 1, 1) plot(c(-1000:1000)/200, x, type="l") x <- ptplnorm(c(-1000:1000)/200, 0, 1, 1) plot(c(-1000:1000)/200, x, type="l") qtplnorm(c(0.025,0.975), 0, c(1,2), 1) x <- rtplnorm(1000, 0, 1, 1) hist(x)

References

  • Sangal, B. P., & Biswas, A. K. (1970). The 3-Parameter Distribution Applications in Hydrology. Water Resources Research, 6(2), 505–515. tools:::Rd_expr_doi("10.1029/WR006i002p00505")

See Also

Distributions

Author(s)

Ivan Svetunkov, ivan@svetunkov.com

  • Maintainer: Ivan Svetunkov
  • License: LGPL-2.1
  • Last published: 2025-04-04