sm function

Scale Model

Scale Model

This method produces a model for scale of distribution for the provided pre-estimated model. The model can be estimated either via lm or alm.

sm(object, ...) ## Default S3 method: sm(object, formula = NULL, data = NULL, parameters = NULL, ...) ## S3 method for class 'lm' sm(object, formula = NULL, data = NULL, parameters = NULL, ...) ## S3 method for class 'alm' sm(object, formula = NULL, data = NULL, parameters = NULL, ...)

Arguments

  • object: The pre-estimated alm or lm model.
  • ...: Other parameters to pass to the method, including those explained in alm (e.g. parameters for optimiser).
  • formula: The formula for scale. It should start with ~ and contain all variables that should impact the scale.
  • data: The data, on which the scale model needs to be estimated. If not provided, then the one used in the object is used.
  • parameters: The parameters to use in the model. Only needed if you know the parameters in advance or want to test yours.

Details

This function is useful, when you suspect a heteroscedasticity in your model and want to fit a model for the scale of the pre-specified distribution. This function is complementary for lm or alm.

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5)) xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+sqrt(exp(0.8+0.2*xreg[,1]))*rnorm(100,0,1), xreg,rnorm(100,300,10)) colnames(xreg) <- c("y","x1","x2","Noise") # Estimate the location model ourModel <- alm(y~.,xreg) # Estimate the scale model ourScale <- sm(ourModel,formula=~x1+x2) # Summary of the scale model summary(ourScale)

Author(s)

Ivan Svetunkov, ivan@svetunkov.com

  • Maintainer: Ivan Svetunkov
  • License: LGPL-2.1
  • Last published: 2025-04-04