Local linear forest tuning
Finds the optimal ridge penalty for local linear prediction.
tune_ll_regression_forest( forest, linear.correction.variables = NULL, ll.weight.penalty = FALSE, num.threads = NULL, lambda.path = NULL )
forest
: The forest used for prediction.linear.correction.variables
: Variables to use for local linear prediction. If left null, all variables are used. Default is NULL.ll.weight.penalty
: Option to standardize ridge penalty by covariance (TRUE), or penalize all covariates equally (FALSE). Defaults to FALSE.num.threads
: Number of threads used in training. If set to NULL, the software automatically selects an appropriate amount.lambda.path
: Optional list of lambdas to use for cross-validation.A list of lambdas tried, corresponding errors, and optimal ridge penalty lambda.