Return the coefficients of an ultraspherical window
ultrwin(n, mu =3, xmu =1)
Arguments
n: Window length, specified as a positive integer.
mu: parameter that controls the side-lobe roll-off ratio. Default: 3.
xmu: parameters that provides a trade-off between the ripple ratio and a width characteristic. Default: 1
Returns
ultraspherical window, returned as a vector.
Note
The Dolph-Chebyshev and Saramaki windows are special cases of the Ultraspherical window, with mu set to 0 and 1, respectively.
Examples
w <- ultrwin(101,3,1)plot (w, type ="l", xlab ="Samples", ylab =" Amplitude")freqz(w)w2 <- ultrwin(101,2,1)f2 <- freqz(w2)w3 <- ultrwin(101,3,1)f3 <- freqz(w3)w4 <- ultrwin(101,4,1)f4 <- freqz(w4)op <- par(mfrow = c(2,1))plot(w2, type ="l", col ="black", xlab ="", ylab ="")lines(w3, col ="red")lines(w4, col ="blue")legend("topright", legend =2:4, col = c("black","red","blue"), lty =1)plot (f2$w,20* log10(abs(f2$h)), type ="l", col ="black", xlab ="", ylab ="", ylim = c(-100,50))lines(f3$w,20* log10(abs(f3$h)), col ="red")lines(f4$w,20* log10(abs(f4$h)), col ="blue")legend("topright", legend =2:4, col = c("black","red","blue"), lty =1)par(op)title(main ="Effect of increasing the values of mu (xmu = 1)")w1 <- ultrwin(101,2,1)f1 <- freqz(w1)w2 <- ultrwin(101,2,1.001)f2 <- freqz(w2)w3 <- ultrwin(101,2,1.002)f3 <- freqz(w3)op <- par(mfrow = c(2,1))plot(w1, type ="l", col ="black", xlab ="", ylab ="")lines(w2, col ="red")lines(w3, col ="blue")legend("topright", legend =2:4, col = c("black","red","blue"), lty =1)plot (f1$w,20* log10(abs(f1$h)), type ="l", col ="black", xlab ="", ylab ="", ylim = c(-100,50))lines(f2$w,20* log10(abs(f2$h)), col ="red")lines(f3$w,20* log10(abs(f3$h)), col ="blue")legend("topright", legend = c(1,1.001,1.002), col = c("black","red","blue"), lty =1)par(op)title(main ="Effect of increasing the values of xmu (mu = 2)")
References
[1] Bergen, S.W.A., and Antoniou, A. Design of Ultraspherical Window Functions with Prescribed Spectral Characteristics. EURASIP Journal on Applied Signal Processing 2004:13, 2053–2065.