Legendre functions
Legendre functions as per the Gnu Scientific Library reference manual section 7.24, and AMS-55, chapter 8. These functions are declared in header file gsl_sf_legendre.h
legendre_P1(x, give=FALSE, strict=TRUE) legendre_P2(x, give=FALSE, strict=TRUE) legendre_P3(x, give=FALSE, strict=TRUE) legendre_Pl(l, x, give=FALSE, strict=TRUE) legendre_Pl_array(lmax, x, give=FALSE, strict=TRUE) legendre_Q0(x, give=FALSE, strict=TRUE) legendre_Q1(x, give=FALSE, strict=TRUE) legendre_Ql(l, x, give=FALSE, strict=TRUE) legendre_array_n(lmax) legendre_array_index(l,m) legendre_check_args(x,lmax,norm,csphase) legendre_array(x, lmax, norm=1, csphase= -1) legendre_deriv_array(x, lmax, norm=1, csphase= -1) legendre_deriv_alt_array(x, lmax, norm=1, csphase= -1) legendre_deriv2_array(x, lmax, norm=1, csphase= -1) legendre_deriv2_alt_array(x, lmax, norm=1, csphase= -1) legendre_Plm(l, m, x, give=FALSE, strict=TRUE) legendre_sphPlm(l, m, x, give=FALSE, strict=TRUE) conicalP_half(lambda, x, give=FALSE, strict=TRUE) conicalP_mhalf(lambda, x, give=FALSE, strict=TRUE) conicalP_0(lambda, x, give=FALSE, strict=TRUE) conicalP_1(lambda, x, give=FALSE, strict=TRUE) conicalP_sph_reg(l, lambda, x, give=FALSE, strict=TRUE) conicalP_cyl_reg(m, lambda, x, give=FALSE, strict=TRUE) legendre_H3d_0(lambda, eta, give=FALSE, strict=TRUE) legendre_H3d_1(lambda, eta, give=FALSE, strict=TRUE) legendre_H3d(l, lambda, eta, give=FALSE, strict=TRUE) legendre_H3d_array(lmax, lambda, eta, give=FALSE, strict=TRUE)
eta,lambda,x
: input: real values
l,m,lmax
: input: integer values
csphase,norm
: Options for use with legendre_array()
give
: Boolean, with default FALSE
meaning to return just the answers, and TRUE
meaning to return a status vector as well
strict
: Boolean, with TRUE
meaning to return NaN
if nonzero status is returned by the GSL function (FALSE
means to return the value: use with caution)
https://www.gnu.org/software/gsl/
Robin K. S. Hankin
theta <- seq(from=0,to=pi/2,len=100) plot(theta,legendre_P1(cos(theta)),type="l",ylim=c(-0.5,1), main="Figure 8.1, p338") abline(1,0) lines(theta,legendre_P2(cos(theta)),type="l") lines(theta,legendre_P3(cos(theta)),type="l") x <- seq(from=0,to=1,len=600) plot(x, legendre_Plm(3,1,x), type="l",lty=3,main="Figure 8.2, p338: note sign error") lines(x,legendre_Plm(2,1,x), type="l",lty=2) lines(x,legendre_Plm(1,1,x), type="l",lty=1) abline(0,0) plot(x,legendre_Ql(0,x),xlim=c(0,1), ylim=c(-1,1.5), type="l",lty=1, main="Figure 8.4, p339") lines(x,legendre_Ql(1,x),lty=2) lines(x,legendre_Ql(2,x),lty=3) lines(x,legendre_Ql(3,x),lty=4) abline(0,0) #table 8.1 of A&S: t(legendre_Pl_array(10, seq(from=0,to=1,by=0.01))[1+c(2,3,9,10),]) #table 8.3: f <- function(n){legendre_Ql(n, seq(from=0,to=1,by=0.01))} sapply(c(0,1,2,3,9,10),f) # Some checks for the legendre_array() series: # P_6^1(0.3): legendre_array(0.3,7)[7,2] # MMA: LegendreP[6,1,0.3]; note off-by-one issue # d/dx P_8^5(x) @ x=0.2: legendre_deriv_array(0.2,8)[9,6] # MMA: D[LegendreP[8,5,x],x] /. {x -> 0.2} # alternative derivatives: legendre_deriv_alt_array(0.4,8)[9,6] # D[LegendreP[8,5,Cos[x]],x] /. x -> ArcCos[0.4]