Bootstrapped standard errors of effect size estimates
guess_stnderr
guess_stnderr(pre_test = NULL, pst_test = NULL, nsamps = 100, seed = 31415, force9 = FALSE)
pre_test
: data.frame carrying pre_test itemspst_test
: data.frame carrying pst_test itemsnsamps
: number of resamples, default is 100seed
: random seed, default is 31415force9
: Optional. There are cases where DK data doesn't have DK. But we need the entire matrix. By default it is FALSE.list with standard error of parameters, estimates of learning, standard error of learning by item
pre_test <- data.frame(pre_item1=c(1,0,0,1,0), pre_item2=c(1,NA,0,1,0)) pst_test <- data.frame(pst_item1=pre_test[,1] + c(0,1,1,0,0), pst_item2 = pre_test[,2] + c(0,1,0,0,1)) ## Not run: guess_stnderr(pre_test, pst_test, nsamps=10, seed = 31415)