Fit a multivariate linear model by robust regression using a simple M estimator.
robmlm(X,...)## Default S3 method:robmlm( X, Y, w, P =2* pnorm(4.685, lower.tail =FALSE), tune, max.iter =100, psi = psi.bisquare, tol =1e-06, initialize, verbose =FALSE,...)## S3 method for class 'formula'robmlm( formula, data, subset, weights, na.action, model =TRUE, contrasts =NULL,...)## S3 method for class 'robmlm'print(x,...)## S3 method for class 'robmlm'summary(object,...)## S3 method for class 'summary.robmlm'print(x,...)
Arguments
X: for the default method, a model matrix, including the constant (if present)
...: other arguments, passed down. In particular relevant control arguments can be passed to the to the robmlm.default method.
Y: for the default method, a response matrix
w: prior weights
P: two-tail probability, to find cutoff quantile for chisq (tuning constant); default is set for bisquare weight function
tune: tuning constant (if given directly)
max.iter: maximum number of iterations
psi: robustness weight function; psi.bisquare is the default
tol: convergence tolerance, maximum relative change in coefficients
initialize: modeling function to find start values for coefficients, equation-by-equation; if absent WLS (lm.wfit) is used
verbose: show iteration history? (TRUE or FALSE)
formula: a formula of the form cbind(y1, y2, ...) ~ x1 + x2 + ....
data: a data frame from which variables specified in formula
are preferentially to be taken.
subset: An index vector specifying the cases to be used in fitting.
weights: a vector of prior weights for each case.
na.action: A function to specify the action to be taken if NAs are found. The 'factory-fresh' default action in R is na.omit, and can be changed by options``(na.action=).
model: should the model frame be returned in the object?
contrasts: optional contrast specifications; see lm for details.
x: a robmlm object
object: a robmlm object
Returns
An object of class "robmlm" inheriting from c("mlm", "lm").
This means that the returned "robmlm" contains all the components of "mlm" objects described for lm, plus the following:
weights: final observation weights
iterations: number of iterations
converged: logical: did the IWLS process converge?
The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by robmlm.
Details
These S3 methods are designed to provide a specification of a class of robust methods which extend mlms, and are therefore compatible with other mlm extensions, including Anova and heplot.
Fitting is done by iterated re-weighted least squares (IWLS), using weights based on the Mahalanobis squared distances of the current residuals from the origin, and a scaling (covariance) matrix calculated by cov.trob. The design of these methods were loosely modeled on rlm.
An internal vcov.mlm function is an extension of the standard vcov method providing for observation weights.
Examples
############### Skulls data# make shorter labels for epochs and nicer variable labels in heplotsSkulls$epoch <- factor(Skulls$epoch, labels=sub("c","",levels(Skulls$epoch)))# variable labelsvlab <- c("maxBreadth","basibHeight","basialLength","nasalHeight")# fit manova model, classically and robustlysk.mod <- lm(cbind(mb, bh, bl, nh)~ epoch, data=Skulls)sk.rmod <- robmlm(cbind(mb, bh, bl, nh)~ epoch, data=Skulls)# standard mlm methods apply herecoefficients(sk.rmod)# index plot of weightsplot(sk.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")points(sk.rmod$weights, pch=16, col=Skulls$epoch)axis(side=1, at=15+seq(0,120,30), labels=levels(Skulls$epoch), tick=FALSE, cex.axis=1)# heplots to see effect of robmlm vs. mlmheplot(sk.mod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), xlab=vlab[1], ylab=vlab[2], cex=1.25, lty=1)heplot(sk.rmod, hypotheses=list(Lin="epoch.L", Quad="epoch.Q"), add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), term.labels=FALSE, hyp.labels=FALSE, err.label="")############### Pottery datadata(Pottery, package ="carData")pottery.mod <- lm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)pottery.rmod <- robmlm(cbind(Al,Fe,Mg,Ca,Na)~Site, data=Pottery)car::Anova(pottery.mod)car::Anova(pottery.rmod)# index plot of weightsplot(pottery.rmod$weights, type="h")points(pottery.rmod$weights, pch=16, col=Pottery$Site)# heplots to see effect of robmlm vs. mlmheplot(pottery.mod, cex=1.3, lty=1)heplot(pottery.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), term.labels=FALSE, err.label="")################ Prestige datadata(Prestige, package ="carData")# treat women and prestige as response variables for this exampleprestige.mod <- lm(cbind(women, prestige)~ income + education + type, data=Prestige)prestige.rmod <- robmlm(cbind(women, prestige)~ income + education + type, data=Prestige)coef(prestige.mod)coef(prestige.rmod)# how much do coefficients change?round(coef(prestige.mod)- coef(prestige.rmod),3)# pretty plot of case weightsplot(prestige.rmod$weights, type="h", xlab="Case Index", ylab="Robust mlm weight", col="gray")points(prestige.rmod$weights, pch=16, col=Prestige$type)legend(0,0.7, levels(Prestige$type), pch=16, col=palette()[1:3], bg="white")heplot(prestige.mod, cex=1.4, lty=1)heplot(prestige.rmod, add=TRUE, error.ellipse=TRUE, lwd=c(2,2), lty=c(2,2), term.labels=FALSE, err.label="")
References
A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth & Brooks/Cole.