neff.hmclearn function

Effective sample size calculation

Effective sample size calculation

Calculates an estimate of the adjusted MCMC sample size per parameter adjusted for autocorrelation.

## S3 method for class 'hmclearn' neff(object, burnin = NULL, lagmax = NULL, ...)

Arguments

  • object: an object of class hmclearn, usually a result of a call to mh or hmc
  • burnin: optional numeric parameter for the number of initial MCMC samples to omit from the summary
  • lagmax: maximum lag to extract for determining effective sample sizes
  • ...: currently unused

Returns

Numeric vector with effective sample sizes for each parameter in the model

Examples

# poisson regression example set.seed(7363) X <- cbind(1, matrix(rnorm(40), ncol=2)) betavals <- c(0.8, -0.5, 1.1) lmu <- X %*% betavals y <- sapply(exp(lmu), FUN = rpois, n=1) f <- hmc(N = 1000, theta.init = rep(0, 3), epsilon = c(0.03, 0.02, 0.015), L = 10, logPOSTERIOR = poisson_posterior, glogPOSTERIOR = g_poisson_posterior, varnames = paste0("beta", 0:2), param = list(y=y, X=X), parallel=FALSE, chains=2) neff(f, burnin=100)

References

Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC. Section 11.5

  • Maintainer: Samuel Thomas
  • License: GPL-3
  • Last published: 2020-10-05

Useful links