Summarizing HMC Model Fits
summary method for class hmclearn
## S3 method for class 'hmclearn' summary( object, burnin = NULL, probs = c(0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975), ... )
object
: an object of class hmclearn
, usually a result of a call to mh
or hmc
burnin
: optional numeric parameter for the number of initial MCMC samples to omit from the summaryprobs
: quantiles to summarize the posterior distribution...
: additional arguments to pass to quantile
Returns a matrix with posterior quantiles and the posterior scale reduction factor statistic for each parameter.
# Linear regression example set.seed(521) X <- cbind(1, matrix(rnorm(300), ncol=3)) betavals <- c(0.5, -1, 2, -3) y <- X%*%betavals + rnorm(100, sd=.2) f1 <- hmc(N = 500, theta.init = c(rep(0, 4), 1), epsilon = 0.01, L = 10, logPOSTERIOR = linear_posterior, glogPOSTERIOR = g_linear_posterior, varnames = c(paste0("beta", 0:3), "log_sigma_sq"), param=list(y=y, X=X), parallel=FALSE, chains=1) summary(f1)
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC.
Gelman, A. and Rubin, D. (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457-472.
Useful links