Linear Constraint
linear(L, dir, rhs, on_big_m = FALSE)
L
: a named vector or matrix defining the linear constraints on the coefficients of the covariates.dir
: a character vector giving the direction of the linear constraints.rhs
: a numeric vector giving the right hand side of the linear constraint.on_big_m
: a logical indicating if the constraint should be imposed on the big-M related binary variables.A holistic generalized model constraint, object inheriting from class "hglmc"
.
# vector constraint beta <- c(1, -2, 3) dat <- rhglm(100, beta) constraints <- c(linear(c(x1 = 2, x2 = 1), "==", 0), rho_max(1)) hglm(y ~ ., data = dat, constraints = constraints) # matrix constraint dat <- rhglm(100, c(1, -2, 3, 4, 5, 6, 7)) mat <- diag(2) colnames(mat) <- c("x1", "x5") constraints <- c(linear(mat, c("==", "=="), c(-1, 3)), rho_max(1)) hglm(y ~ ., data = dat, constraints = constraints)
Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics. Society for Industrial and Applied Mathematics. tools:::Rd_expr_doi("10.1137/1.9781611971217")
Other Constraint-Constructors: group_equal()
, group_inout()
, group_sparsity()
, include()
, k_max()
, lower()
, pairwise_sign_coherence()
, rho_max()
, sign_coherence()
, upper()
Useful links