Set a upper bound on the coefficient of specific covariates.
upper(kvars)
Arguments
kvars: a named vector giving the upper bounds. The names should correspond to the names of the covariates in the model matrix.
Returns
A holistic generalized model constraint, object inheriting from class "hglmc".
Examples
dat <- rhglm(100, c(1,2,-3,4,5,-6))constraints <- upper(c(x1 =0, x4 =1))hglm(y ~ ., constraints = constraints, data = dat)
References
McDonald, J. W., & Diamond, I. D. (1990). On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints. Biometrics, 46 (1): 201–206. tools:::Rd_expr_doi("10.2307/2531643")
Slawski, M., & Hein, M. (2013). Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electronic Journal of Statistics, 7: 3004-3056. tools:::Rd_expr_doi("10.1214/13-EJS868")