plot.HM is a method to plot hybrid models from this package
## S3 method for class 'HM'plot(x, sim =1, plot.type ="subpop", facet.scales ="free_y",...)
Arguments
x: HM object
sim: indicates which simulation to plot.
plot.type: plots the mean number of each state variable for the whole population ('pop.mean'), or the subpopulations of a particular simulation ('subpop', default value), or the mean of each subpopulation ('subpop.mean').
facet.scales: should scales be fixed ("free_y", the default), free ("free"), or free in one dimension ("free_x", "free_y"). See ggplot2 package for more details.
...: arguments to be passed to methods.
Examples
# Parameters and initial conditions for an SIS model# loading the data set data(networkSample)# help("networkSample"), for more infonetworkSample <- networkSample[which(networkSample$Day <"2012-03-20"),]var.names <- list(from ='originID', to ='destinationID', Time ='Day', arc ='num.animals')prop.func <- c('beta * S * I / (S + I)','gamma * I')state.var <- c('S','I')state.change.matrix <- matrix(c(-1,1,# S1,-1),# I nrow =2, ncol =2, byrow =TRUE)model.parms <- c(beta =0.1, gamma =0.01)init.cond <- rep(100, length(unique(c(networkSample$originID, networkSample$destinationID))))names(init.cond)<- paste('S', unique(c(networkSample$originID, networkSample$destinationID)), sep ='')init.cond <- c(init.cond, c(I36811 =10, I36812 =10))# adding infection# running simulations, check num of cores available (num.cores)sim.results <- hybridModel(network = networkSample, var.names = var.names, model.parms = model.parms, state.var = state.var, prop.func = prop.func, init.cond = init.cond, state.change.matrix = state.change.matrix, sim.number =2, num.cores =2)# default plot layout (plot.types: 'pop.mean', 'subpop', or 'subpop.mean')plot(sim.results, plot.type ='subpop.mean')# changing plot layout with ggplot2 (example)# uncomment the lines below to test new layout exemple#library(ggplot2)#plot(sim.results, plot.type = 'subpop') + ggtitle('New Layout') + # theme_bw() + theme(axis.title = element_text(size = 14, face = "italic"))
References
[1] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of Statistical Software Volume 94, Issue 6 doi:10.18637/jss.v094.i06.