summary.HM is a method to print a summary with basic description of nodes' states at a specific time (the time must be present in the network data). The default value is Null, that means it prints nodes' final states.
## S3 method for class 'HM'summary(object, at =NULL, stateVars =NULL, nodes =NULL,...)
Arguments
object: HM object
at: the date (as character) that will be used to print the summary
stateVars: vector containing the state variable to summarize. The default value is NULL, which will print a summary with all states.
nodes: vector containing the nodes of interest. The default value is NULL, which will print a summary with all nodes.
...: arguments to be passed to methods.
Examples
# Parameters and initial conditions for an SIS model# loading the data set data(networkSample)# help("networkSample"), for more infonetworkSample <- networkSample[which(networkSample$Day <"2012-03-20"),]var.names <- list(from ='originID', to ='destinationID', Time ='Day', arc ='num.animals')prop.func <- c('beta * S * I / (S + I)','gamma * I')state.var <- c('S','I')state.change.matrix <- matrix(c(-1,1,# S1,-1),# I nrow =2, ncol =2, byrow =TRUE)model.parms <- c(beta =0.1, gamma =0.01)init.cond <- rep(100, length(unique(c(networkSample$originID, networkSample$destinationID))))names(init.cond)<- paste('S', unique(c(networkSample$originID, networkSample$destinationID)), sep ='')init.cond <- c(init.cond, c(I36811 =10, I36812 =10))# adding infection# running simulations, check num of cores available (num.cores)sim.results <- hybridModel(network = networkSample, var.names = var.names, model.parms = model.parms, state.var = state.var, prop.func = prop.func, init.cond = init.cond, state.change.matrix = state.change.matrix, sim.number =4, num.cores =2)summary(sim.results, stateVars = c('S','I'), nodes = c(36812,36813))
References
[1] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of Statistical Software Volume 94, Issue 6 doi:10.18637/jss.v094.i06.