Plot Generic for Break Down Uncertainty Objects
## S3 method for class 'break_down_uncertainty' plot( x, ..., vcolors = DALEX::colors_breakdown_drwhy(), show_boxplots = TRUE, max_features = 10, max_vars = NULL )
x
: an explanation created with break_down_uncertainty
...
: other parameters.vcolors
: If NA
(default), DrWhy colors are used.show_boxplots
: logical if TRUE
(default) boxplot will be plotted to show uncertanity of attributionsmax_features
: maximal number of features to be included in the plot. By default it's 10
.max_vars
: alias for the max_features
parameter.a ggplot2
object.
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") sh_glm <- shap(explain_titanic_glm, titanic_imputed[1, ]) sh_glm plot(sh_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- break_down_uncertainty(explainer_rf, new_observation, path = c(3,2,4,1,5), show_boxplots = FALSE) bd_rf plot(bd_rf, max_features = 3) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = c("floor", "no.rooms", "district", "construction.year", "surface")) bd_rf plot(bd_rf) bd_rf <- shap(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf) plot(bd_rf, show_boxplots = FALSE) ## End(Not run)
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
Useful links