Extended bayesian information criteria for gaussian graphical models
extendedBIC(gamma,omegahat,S,n)
gamma
: a tuning parameter taking a scalar in [0,1] and leading to stronger penalization of large graphsomegahat
: a p x p matrix indicating an estimates of precision (inverse covariance) matrixS
: a p x p matrix indicating sample covariance matrixn
: a scalar indicating sample sizeExtended BIC penalized by the size of graphs
Foygel, R. and Drton, M. (2010). Extended bayesian information criteria for gaussian graphical models. arXiv preprint arXiv:1011.6640 .
Min Jin Ha mjha@mdanderson.org
library(glasso) data(gbm) x = gbm[,1] Y = gbm[,-1] # Estimating inverse covariance matrix using GLasso # S = cov(Y) rhoarray = exp(seq(log(0.001),log(1),length=100)) BIC = rep(0,length(rhoarray)) for (rh in 1:length(rhoarray)) { fit.gl1 = glasso(S,rho=rhoarray[rh]) BIC[rh] = extendedBIC(gamma=0,omegahat=fit.gl1$wi,S=S,n=nrow(Y)) } rho = rhoarray[which.min(BIC)] fit.gl2 = glasso(S,rho=rho) Omega = fit.gl2$wi
Useful links