imputeTS3.3 package

Time Series Missing Value Imputation

ggplot_na_distribution

Lineplot to Visualize the Distribution of Missing Values

ggplot_na_distribution2

Stacked Barplot to Visualize Missing Values per Interval

ggplot_na_gapsize

Visualize Occurrences of NA gap sizes

ggplot_na_imputations

Visualize Imputed Values

ggplot_na_intervals

Discontinued - Use ggplot_na_distribution2 instead.

imputeTS-package

imputeTS: Time Series Missing Value Imputation

na.interpolation

Deprecated use na_interpolation instead.

na.kalman

Deprecated use na_kalman instead.

na.locf

Deprecated use na_locf instead.

na.ma

Deprecated use na_ma instead.

na.mean

Deprecated use na_mean instead.

na.random

Deprecated use na_random instead.

na.remove

Deprecated use na_remove instead.

na.replace

Deprecated use na_replace instead.

na.seadec

Deprecated use na_seadec instead.

na.seasplit

Deprecated use na_seasplit instead.

na_interpolation

Missing Value Imputation by Interpolation

na_kalman

Missing Value Imputation by Kalman Smoothing and State Space Models

na_locf

Missing Value Imputation by Last Observation Carried Forward

na_ma

Missing Value Imputation by Weighted Moving Average

na_mean

Missing Value Imputation by Mean Value

na_random

Missing Value Imputation by Random Sample

na_remove

Remove Missing Values

na_replace

Replace Missing Values by a Defined Value

na_seadec

Seasonally Decomposed Missing Value Imputation

na_seasplit

Seasonally Splitted Missing Value Imputation

plotNA.distribution

Discontinued - Use ggplot_na_distribution instead.

plotNA.distributionBar

Discontinued - Use ggplot_na_distribution2 instead.

plotNA.gapsize

Discontinued - Use ggplot_na_gapsize instead.

plotNA.imputations

Discontinued - Use ggplot_na_imputations instead.

reexports

Objects exported from other packages

statsNA

Print Statistics about Missing Values

Imputation (replacement) of missing values in univariate time series. Offers several imputation functions and missing data plots. Available imputation algorithms include: 'Mean', 'LOCF', 'Interpolation', 'Moving Average', 'Seasonal Decomposition', 'Kalman Smoothing on Structural Time Series models', 'Kalman Smoothing on ARIMA models'. Published in Moritz and Bartz-Beielstein (2017) <doi:10.32614/RJ-2017-009>.

  • Maintainer: Steffen Moritz
  • License: GPL-3
  • Last published: 2022-09-09