isotree0.6.1-1 package

Isolation-Based Outlier Detection

isolation.forest

Create Isolation Forest Model

isotree.add.tree

Add additional (single) tree to isolation forest model

isotree.append.trees

Append isolation trees from one model into another

isotree.build.indexer

Build Indexer for Faster Terminal Node Predictions and/or Distance Cal...

isotree.deep.copy

Deep-Copy an Isolation Forest Model Object

isotree.drop.imputer

Drop Imputer Sub-Object from Isolation Forest Model Object

isotree.drop.indexer

Drop Indexer Sub-Object from Isolation Forest Model Object

isotree.drop.reference.points

Drop Reference Points from Isolation Forest Model Object

isotree.export.model

Export Isolation Forest model

isotree.get.num.nodes

Get Number of Nodes per Tree

isotree.import.model

Load an Isolation Forest model exported from Python

isotree.is.same

Check if two Isolation Forest Models Share the Same C++ Object

isotree.plot.tree

Plot Tree from Isolation Forest Model

isotree.restore.handle

Unpack isolation forest model after de-serializing

isotree.set.nthreads

Set Number of Threads for Isolation Forest Model Object

isotree.set.reference.points

Set Reference Points to Calculate Distances or Kernels With

isotree.subset.trees

Subset trees of a given model

isotree.to.graphviz

Generate GraphViz Dot Representation of Tree

isotree.to.json

Generate JSON representations of model trees

isotree.to.sql

Generate SQL statements from Isolation Forest model

length.isolation_forest

Get Number of Trees in Model

predict.isolation_forest

Predict method for Isolation Forest

print.isolation_forest

Print summary information from Isolation Forest model

summary.isolation_forest

Print summary information from Isolation Forest model

variable.names.isolation_forest

Get Variable Names for Isolation Forest Model

Fast and multi-threaded implementation of isolation forest (Liu, Ting, Zhou (2008) <doi:10.1109/ICDM.2008.17>), extended isolation forest (Hariri, Kind, Brunner (2018) <arXiv:1811.02141>), SCiForest (Liu, Ting, Zhou (2010) <doi:10.1007/978-3-642-15883-4_18>), fair-cut forest (Cortes (2021) <arXiv:2110:13402>), robust random-cut forest (Guha, Mishra, Roy, Schrijvers (2016) <http://proceedings.mlr.press/v48/guha16.html>), and customizable variations of them, for isolation-based outlier detection, clustered outlier detection, distance or similarity approximation (Cortes (2019) <arXiv:1910.12362>), isolation kernel calculation (Ting, Zhu, Zhou (2018) <doi:10.1145/3219819.3219990>), and imputation of missing values (Cortes (2019) <arXiv:1911.06646>), based on random or guided decision tree splitting, and providing different metrics for scoring anomalies based on isolation depth or density (Cortes (2021) <arXiv:2111.11639>). Provides simple heuristics for fitting the model to categorical columns and handling missing data, and offers options for varying between random and guided splits, and for using different splitting criteria.

  • Maintainer: David Cortes
  • License: BSD_2_clause + file LICENSE
  • Last published: 2024-03-27