plot_residual_cor function

Plot the residual correlation matrix from a latent variable model (LVM).

Plot the residual correlation matrix from a latent variable model (LVM).

Plot the posterior mean estimator of residual correlation matrix reordered by first principal component using corrplot function from the package of the same name.

plot_residual_cor( mod, prob = NULL, main = "Residual Correlation Matrix from LVM", cex.main = 1.5, diag = FALSE, type = "lower", method = "color", mar = c(1, 1, 3, 1), tl.srt = 45, tl.cex = 0.5, ... )

Arguments

  • mod: An object of class "jSDM".
  • prob: A numeric scalar in the interval (0,1)(0,1) giving the target probability coverage of the intervals, by which to determine whether the correlations are "significant". If prob=0.95 is specified only significant correlations, whose 95%95\% HPD interval does not contain zero, are represented. Defaults to prob=NULL to represent all correlations significant or not.
  • main: Character, title of the graph.
  • cex.main: Numeric, title's size.
  • diag: Logical, whether display the correlation coefficients on the principal diagonal.
  • type: Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix.
  • method: Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color".
  • mar: See par
  • tl.srt: Numeric, for text label string rotation in degrees, see text.
  • tl.cex: Numeric, for the size of text label (variable names).
  • ...: Further arguments passed to corrplot function

Returns

No return value. Displays a reordered correlation matrix.

Examples

library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod<-jSDM_binomial_probit(# Response variable presence_data = PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.1, rate=0.1, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, # Various seed=1234, verbose=1) # Representation of residual correlation between species plot_residual_cor(mod) plot_residual_cor(mod, prob=0.95)

References

Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of a Correlation Matrix (Version 0.84)

Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.

See Also

corrplot jSDM-package jSDM_binomial_probit

jSDM_binomial_logit jSDM_poisson_log

Author(s)

Ghislain Vieilledent ghislain.vieilledent@cirad.fr

Jeanne Clément jeanne.clement16@laposte.net