Diagnostic function for bcdpmeta object in jarbes
This function performers an approximated Bayesian cross-validation for a bcmeta object and specially designed diagnostics to detect the existence of a biased component.
## S3 method for class 'bcdpmeta' diagnostic( object, post.p.value.cut = 0.05, study.names = NULL, size.forest = 0.4, lwd.forest = 0.2, shape.forest = 23, bias.plot = TRUE, cross.val.plot = FALSE, level = c(0.5, 0.75, 0.95), x.lim = c(0, 1), y.lim = c(0, 10), x.lab = "P(Bias)", y.lab = "Mean Bias", title.plot = paste("Bias Diagnostics Contours (50%, 75% and 95%)"), kde2d.n = 25, marginals = TRUE, bin.hist = 30, color.line = "black", color.hist = "white", color.data.points = "black", alpha.data.points = 0.1, S = 5000, ... )
object
: The object generated by the function b3lmeta.post.p.value.cut
: Posterior p-value cut point to assess outliers.study.names
: Character vector containing names of the studies used.size.forest
: Size of the center symbol mark in the forest-plot lineslwd.forest
: Thickness of the lines in the forest-plotshape.forest
: Type of symbol for the center mark in the forest-plot linesbias.plot
: Display the bias plot. The default is TRUE.cross.val.plot
: Display the cross validation plot. The default is FALSE.level
: Vector with the probability levels of the contour plot. The default values are: 0.5, 0.75, and 0.95.x.lim
: Numeric vector of length 2 specifying the x-axis limits.y.lim
: Numeric vector of length 2 specifying the y-axis limits.x.lab
: Text with the label of the x-axis.y.lab
: Text with the label of the y-axis.title.plot
: Text for setting a title in the bias plot.kde2d.n
: The number of grid points in each direction for the non-parametric density estimation. The default is 25.marginals
: If TRUE the marginal histograms of the posteriors are added to the plot.bin.hist
: The number of bins in for the histograms. The default value is 30.color.line
: The color of the contour lines. The default is "black.color.hist
: The color of the histogram bars. The default is "white".color.data.points
: The color of the data points. The default is "black".alpha.data.points
: Transparency of the data points.S
: The number of sample values from the joint posterior distribution used to approximate the contours. The default is S=5000....
: ...
Useful links