diagnostic.bcdpmeta function

Diagnostic function for bcdpmeta object in jarbes

Diagnostic function for bcdpmeta object in jarbes

This function performers an approximated Bayesian cross-validation for a bcmeta object and specially designed diagnostics to detect the existence of a biased component.

## S3 method for class 'bcdpmeta' diagnostic( object, post.p.value.cut = 0.05, study.names = NULL, size.forest = 0.4, lwd.forest = 0.2, shape.forest = 23, bias.plot = TRUE, cross.val.plot = FALSE, level = c(0.5, 0.75, 0.95), x.lim = c(0, 1), y.lim = c(0, 10), x.lab = "P(Bias)", y.lab = "Mean Bias", title.plot = paste("Bias Diagnostics Contours (50%, 75% and 95%)"), kde2d.n = 25, marginals = TRUE, bin.hist = 30, color.line = "black", color.hist = "white", color.data.points = "black", alpha.data.points = 0.1, S = 5000, ... )

Arguments

  • object: The object generated by the function b3lmeta.
  • post.p.value.cut: Posterior p-value cut point to assess outliers.
  • study.names: Character vector containing names of the studies used.
  • size.forest: Size of the center symbol mark in the forest-plot lines
  • lwd.forest: Thickness of the lines in the forest-plot
  • shape.forest: Type of symbol for the center mark in the forest-plot lines
  • bias.plot: Display the bias plot. The default is TRUE.
  • cross.val.plot: Display the cross validation plot. The default is FALSE.
  • level: Vector with the probability levels of the contour plot. The default values are: 0.5, 0.75, and 0.95.
  • x.lim: Numeric vector of length 2 specifying the x-axis limits.
  • y.lim: Numeric vector of length 2 specifying the y-axis limits.
  • x.lab: Text with the label of the x-axis.
  • y.lab: Text with the label of the y-axis.
  • title.plot: Text for setting a title in the bias plot.
  • kde2d.n: The number of grid points in each direction for the non-parametric density estimation. The default is 25.
  • marginals: If TRUE the marginal histograms of the posteriors are added to the plot.
  • bin.hist: The number of bins in for the histograms. The default value is 30.
  • color.line: The color of the contour lines. The default is "black.
  • color.hist: The color of the histogram bars. The default is "white".
  • color.data.points: The color of the data points. The default is "black".
  • alpha.data.points: Transparency of the data points.
  • S: The number of sample values from the joint posterior distribution used to approximate the contours. The default is S=5000.
  • ...: ...
  • Maintainer: Pablo Emilio Verde
  • License: GPL (>= 2)
  • Last published: 2025-03-28

Useful links