The R package joinet implements multivariate ridge and lasso regression using stacked generalisation. This multivariate regression typically outperforms univariate regression at predicting correlated outcomes. It provides predictive and interpretable models in high-dimensional settings.
package
Details
Use function joinet for model fitting. Type library(joinet) and then ?joinet or help("joinet)" to open its help file.
See the vignette for further examples. Type vignette("joinet") or browseVignettes("joinet")
to open the vignette.
Examples
## Not run:#--- data simulation ---n <-50; p <-100; q <-3X <- matrix(rnorm(n*p),nrow=n,ncol=p)Y <- replicate(n=q,expr=rnorm(n=n,mean=rowSums(X[,1:5])))# n samples, p inputs, q outputs#--- model fitting ---object <- joinet(Y=Y,X=X)# slot "base": univariate# slot "meta": multivariate#--- make predictions ---y_hat <- predict(object,newx=X)# n x q matrix "base": univariate# n x q matrix "meta": multivariate #--- extract coefficients ---coef <- coef(object)# effects of inputs on outputs# q vector "alpha": intercepts# p x q matrix "beta": slopes#--- model comparison ---loss <- cv.joinet(Y=Y,X=X)# cross-validated loss# row "base": univariate# row "meta": multivariate## End(Not run)