plot.jointMeanCov function

Quantile Plot of Test Statistics

Quantile Plot of Test Statistics

This function displays a quantile plot of test statistics, based on the output of the functions jointMeanCovGroupCen or jointMeanCovModSelCen.

## S3 method for class 'jointMeanCov' plot(x, ...)

Arguments

  • x: output of jointMeanCovGroupCen or jointMeanCovModSelCen.
  • ...: other plotting arguments passed to qqnorm.

Examples

# Define sample sizes n1 <- 5 n2 <- 5 n <- n1 + n2 m <- 200 # Generate data with row and column covariance # matrices each autorogressive of order 1 with # parameter 0.2. The mean is defined so the first # three columns have true differences in group means # equal to four. Z <- matrix(rnorm(m * n), nrow=n, ncol=m) A <- outer(1:m, 1:m, function(i, j) 0.2^abs(i - j)) B <- outer(1:n, 1:n, function(i, j) 0.2^abs(i - j)) M <- matrix(0, nrow=nrow(Z), ncol=ncol(Z)) group.one.indices <- 1:5 group.two.indices <- 6:10 M[group.one.indices, 1:3] <- 2 M[group.two.indices, 1:3] <- -2 X <- t(chol(B)) %*% Z %*% chol(A) + M # Apply Algorithm 2 (jointMeanCovModSelCen) and plot the # test statistics. rowpen <- sqrt(log(m) / n) out <- jointMeanCovModSelCen(X, group.one.indices, rowpen) plot(out)
  • Maintainer: Michael Hornstein
  • License: GPL-2
  • Last published: 2019-05-04

Useful links