This function displays a quantile plot of test statistics, based on the output of the functions jointMeanCovGroupCen or jointMeanCovModSelCen.
## S3 method for class 'jointMeanCov'plot(x,...)
Arguments
x: output of jointMeanCovGroupCen or jointMeanCovModSelCen.
...: other plotting arguments passed to qqnorm.
Examples
# Define sample sizesn1 <-5n2 <-5n <- n1 + n2
m <-200# Generate data with row and column covariance# matrices each autorogressive of order 1 with# parameter 0.2. The mean is defined so the first# three columns have true differences in group means# equal to four.Z <- matrix(rnorm(m * n), nrow=n, ncol=m)A <- outer(1:m,1:m,function(i, j)0.2^abs(i - j))B <- outer(1:n,1:n,function(i, j)0.2^abs(i - j))M <- matrix(0, nrow=nrow(Z), ncol=ncol(Z))group.one.indices <-1:5group.two.indices <-6:10M[group.one.indices,1:3]<-2M[group.two.indices,1:3]<--2X <- t(chol(B))%*% Z %*% chol(A)+ M
# Apply Algorithm 2 (jointMeanCovModSelCen) and plot the# test statistics.rowpen <- sqrt(log(m)/ n)out <- jointMeanCovModSelCen(X, group.one.indices, rowpen)plot(out)