Penalty Parameter for Covariance Estimation Based on Theory
Penalty Parameter for Covariance Estimation Based on Theory
This function returns a theoretically-guided choice of the glasso penalty parameter, based on both the row and column covariance matrices.
theoryRowpenUpperBound(A, B, n1, n2)
Arguments
A: column covariance matrix.
B: row covariance matrix.
n1: sample size of group one.
n2: sample size of group two.
Returns
Returns a theoretically guided choice of the glasso penalty parameter.
Examples
# Define sample sizesn1 <-10n2 <-10n <- n1 + n2
m <-2e3# Column covariance matrix (autoregressive of order 1)A <- outer(1:n,1:n,function(x, y)0.2^abs(x - y))# Row covariance matrix (autoregressive of order 1)B <- outer(1:n,1:n,function(x, y)0.8^abs(x - y))# Calculate theoretically guided Gemini penalty.rowpen <- theoryRowpenUpperBound(A, B, n1, n2)print(rowpen)
References
Joint mean and covariance estimation with unreplicated matrix-variate data Michael Hornstein, Roger Fan, Kerby Shedden, Shuheng Zhou (2018). Joint mean and covariance estimation with unreplicated matrix-variate data. Journal of the American Statistical Association