theoryRowpenUpperBound function

Penalty Parameter for Covariance Estimation Based on Theory

Penalty Parameter for Covariance Estimation Based on Theory

This function returns a theoretically-guided choice of the glasso penalty parameter, based on both the row and column covariance matrices.

theoryRowpenUpperBound(A, B, n1, n2)

Arguments

  • A: column covariance matrix.
  • B: row covariance matrix.
  • n1: sample size of group one.
  • n2: sample size of group two.

Returns

Returns a theoretically guided choice of the glasso penalty parameter.

Examples

# Define sample sizes n1 <- 10 n2 <- 10 n <- n1 + n2 m <- 2e3 # Column covariance matrix (autoregressive of order 1) A <- outer(1:n, 1:n, function(x, y) 0.2^abs(x - y)) # Row covariance matrix (autoregressive of order 1) B <- outer(1:n, 1:n, function(x, y) 0.8^abs(x - y)) # Calculate theoretically guided Gemini penalty. rowpen <- theoryRowpenUpperBound(A, B, n1, n2) print(rowpen)

References

Joint mean and covariance estimation with unreplicated matrix-variate data Michael Hornstein, Roger Fan, Kerby Shedden, Shuheng Zhou (2018). Joint mean and covariance estimation with unreplicated matrix-variate data. Journal of the American Statistical Association

  • Maintainer: Michael Hornstein
  • License: GPL-2
  • Last published: 2019-05-04

Useful links