dneymanA function

The Neyman-A probability function

The Neyman-A probability function

Computes the probability function of the Neyman-A distribution UTF-8

dneymanA(x, lambda1, lambda2, K, log = FALSE)

Arguments

  • x: vector of values
  • lambda1, lambda2: parameters of the distribution
  • K: truncation value for the infinite summation
  • log: logical. If TRUE, the logarithm of the probabilities is returned

Details

The Neyman-A distribution has probability function

eλ1λ2xx!k=0(λ1eλ2)kkxk! \frac{e^{-\lambda_1}\lambda_2^{x}}{x!}\sum_{k=0}^\infty\frac{(\lambda_1e^{-\lambda_2})^kk^x}{k!}

and is an overdispersion model. The summation is truncated to K.

Author(s)

Rafael A. Moral rafael_moral@yahoo.com.br, Clarice G. B. and John Hinde

Examples

x <- 0:10 dneymanA(x, lambda1 = 2, lambda2 = 1.5, K = 50)
  • Maintainer: Rafael de Andrade Moral
  • License: GPL (>= 2)
  • Last published: 2016-11-12

Useful links