Calculate posterior parameter for the Dirichlet, assuming that the observed values came from a Multinomial model from which the number of trials is known and the prior distribution for the probabilities of each category have joint distribution Dirichlet.
update_Multinom(conj.param, ft, Qt, y, parms = list())
Arguments
conj.param: list: A vector containing the concentration parameters of the Dirichlet.
ft: vector: A vector representing the means from the normal distribution. Not used in the default method.
Qt: matrix: A matrix representing the covariance matrix of the normal distribution. Not used in the default method.
y: vector: A vector containing the observations.
parms: list: A list of extra known parameters of the distribution. Not used in this kernel.
Returns
The parameters of the posterior distribution.
See Also
Other auxiliary functions for a Multinomial outcome: convert_Multinom_Normal(), convert_Normal_Multinom(), multnom_pred()