kfn_vectorized function

Convolution of Kernel Function K with fn

Convolution of Kernel Function K with fn

Vectorized evaluation of the convolution of the kernel function K with fn.

kfn_vectorized(u, K, xixj, h, sig)

Arguments

  • u: Numeric vector.
  • K: Kernel function with vectorized in- & output.
  • xixj: Numeric matrix.
  • h: Numeric scalar.
  • sig: Numeric scalar.

Returns

A vector of (Kfn)(u)(K * f_n)(u) evaluated at the values in u.

Details

Vectorized (in u) evaluation of - a more explicit representation of - the integrand K(u)fn(h2/σu)K(u) * f_n(\ldots - h^2/\sigma * u) which is used in the computation of the bias estimator before eq. (2.3) in Srihera & Stute (2011). Also used for the analogous computation of the respective bias estimator in the paragraph after eq. (6) in Eichner & Stute (2013).

Note

An alternative implementation could be K(u) * sapply(h/sig * u, function(v) mean(K(xixj - v))) / h

Examples

require(stats) set.seed(2017); n <- 100; Xdata <- rnorm(n) x0 <- 1; sig <- 1; h <- n^(-1/5) Ai <- (x0 - Xdata)/h Bj <- mean(Xdata) - Xdata # in case of non-robust method AiBj <- outer(Ai, Bj/sig, "+") ugrid <- seq(-10, 10, by = 1) kader:::kfn_vectorized(u = ugrid, K = dnorm, xixj = AiBj, h = h, sig = sig)
  • Maintainer: Gerrit Eichner
  • License: GPL-3
  • Last published: 2017-10-04