Class "csi"
The reduced Cholesky decomposition object class
Objects can be created by calls of the form new("csi", ...)
. or by calling the csi
function.
.Data
:: Object of class "matrix"
contains the decomposed matrixpivots
:: Object of class "vector"
contains the pivots performeddiagresidues
:: Object of class "vector"
contains the diagonial residuesmaxresiduals
:: Object of class "vector"
contains the maximum residues"vector"
contains the predicted gain before adding each column"vector"
contains the actual gain after adding each column"matrix"
contains Q from the QR decomposition of the kernel matrix"matrix"
contains R from the QR decomposition of the kernel matrixClass "matrix"
, directly.
signature(object = "csi")
: returns the diagonial residuessignature(object = "csi")
: returns the maximum residuessignature(object = "csi")
: returns the pivots performedsignature(object = "csi")
: returns the predicted gain before adding each columnsignature(object = "csi")
: returns the actual gain after adding each columnsignature(object = "csi")
: returns Q from the QR decomposition of the kernel matrixsignature(object = "csi")
: returns R from the QR decomposition of the kernel matrixAlexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
csi
, inchol-class
data(iris) ## create multidimensional y matrix yind <- t(matrix(1:3,3,150)) ymat <- matrix(0, 150, 3) ymat[yind==as.integer(iris[,5])] <- 1 datamatrix <- as.matrix(iris[,-5]) # initialize kernel function rbf <- rbfdot(sigma=0.1) rbf Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30) dim(Z) pivots(Z) # calculate kernel matrix K <- crossprod(t(Z)) # difference between approximated and real kernel matrix (K - kernelMatrix(kernel=rbf, datamatrix))[6,]
Useful links