inlearn function

Onlearn object initialization

Onlearn object initialization

Online Kernel Algorithm object onlearn initialization function.

## S4 method for signature 'numeric' inlearn(d, kernel = "rbfdot", kpar = list(sigma = 0.1), type = "novelty", buffersize = 1000)

Arguments

  • d: the dimensionality of the data to be learned

  • kernel: the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a dot product between two vector arguments. kernlab provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:

    • rbfdot Radial Basis kernel function "Gaussian"
    • polydot Polynomial kernel function
    • vanilladot Linear kernel function
    • tanhdot Hyperbolic tangent kernel function
    • laplacedot Laplacian kernel function
    • besseldot Bessel kernel function
    • anovadot ANOVA RBF kernel function

    The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.

  • kpar: the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. For valid parameters for existing kernels are :

    • sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".
    • degree, scale, offset for the Polynomial kernel "polydot"
    • scale, offset for the Hyperbolic tangent kernel function "tanhdot"
    • sigma, order, degree for the Bessel kernel "besseldot".
    • sigma, degree for the ANOVA kernel "anovadot".

    Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.

  • type: the type of problem to be learned by the online algorithm : classification, regression, novelty

  • buffersize: the size of the buffer to be used

Details

The inlearn is used to initialize a blank onlearn object.

Returns

The function returns an S4 object of class onlearn that can be used by the onlearn function.

Author(s)

Alexandros Karatzoglou

alexandros.karatzoglou@ci.tuwien.ac.at

See Also

onlearn, onlearn-class

Examples

## create toy data set x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2)) y <- matrix(c(rep(1,50),rep(-1,50)),,1) ## initialize onlearn object on <- inlearn(2, kernel = "rbfdot", kpar = list(sigma = 0.2), type = "classification") ## learn one data point at the time for(i in sample(1:100,100)) on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1) sign(predict(on,x))
  • Maintainer: Alexandros Karatzoglou
  • License: GPL-2
  • Last published: 2024-08-13

Useful links