## S4 method for signature 'numeric'inlearn(d, kernel ="rbfdot", kpar = list(sigma =0.1), type ="novelty", buffersize =1000)
Arguments
d: the dimensionality of the data to be learned
kernel: the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a dot product between two vector arguments. kernlab provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:
rbfdot Radial Basis kernel function "Gaussian"
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
kpar: the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. For valid parameters for existing kernels are :
sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
type: the type of problem to be learned by the online algorithm : classification, regression, novelty
buffersize: the size of the buffer to be used
Details
The inlearn is used to initialize a blank onlearn object.
Returns
The function returns an S4 object of class onlearn that can be used by the onlearn function.
## create toy data setx <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))y <- matrix(c(rep(1,50),rep(-1,50)),,1)## initialize onlearn objecton <- inlearn(2, kernel ="rbfdot", kpar = list(sigma =0.2), type ="classification")## learn one data point at the timefor(i in sample(1:100,100))on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)sign(predict(on,x))