Computes the canonical correlation analysis in feature space.
## S4 method for signature 'matrix'kcca(x, y, kernel="rbfdot", kpar=list(sigma=0.1),gamma =0.1, ncomps =10,...)
Arguments
x: a matrix containing data index by row
y: a matrix containing data index by row
kernel: the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a inner product in feature space between two vector arguments. kernlab provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:
rbfdot Radial Basis kernel function "Gaussian"
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
splinedot Spline kernel
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.
kpar: the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. Valid parameters for existing kernels are :
sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
gamma: regularization parameter (default : 0.1)
ncomps: number of canonical components (default : 10)
...: additional parameters for the kpca function
Details
The kernel version of canonical correlation analysis. Kernel Canonical Correlation Analysis (KCCA) is a non-linear extension of CCA. Given two random variables, KCCA aims at extracting the information which is shared by the two random variables. More precisely given x and y the purpose of KCCA is to provide nonlinear mappings f(x) and g(y) such that their correlation is maximized.
Returns
An S4 object containing the following slots: - kcor: Correlation coefficients in feature space
xcoef: estimated coefficients for the x variables in the feature space
ycoef: estimated coefficients for the y variables in the feature space
References
Malte Kuss, Thore Graepel
The Geometry Of Kernel Canonical Correlation Analysis