kcca function

Kernel Canonical Correlation Analysis

Kernel Canonical Correlation Analysis

Computes the canonical correlation analysis in feature space.

## S4 method for signature 'matrix' kcca(x, y, kernel="rbfdot", kpar=list(sigma=0.1), gamma = 0.1, ncomps = 10, ...)

Arguments

  • x: a matrix containing data index by row

  • y: a matrix containing data index by row

  • kernel: the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a inner product in feature space between two vector arguments. kernlab provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:

    • rbfdot Radial Basis kernel function "Gaussian"
    • polydot Polynomial kernel function
    • vanilladot Linear kernel function
    • tanhdot Hyperbolic tangent kernel function
    • laplacedot Laplacian kernel function
    • besseldot Bessel kernel function
    • anovadot ANOVA RBF kernel function
    • splinedot Spline kernel

    The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument.

  • kpar: the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. Valid parameters for existing kernels are :

    • sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".
    • degree, scale, offset for the Polynomial kernel "polydot"
    • scale, offset for the Hyperbolic tangent kernel function "tanhdot"
    • sigma, order, degree for the Bessel kernel "besseldot".
    • sigma, degree for the ANOVA kernel "anovadot".

    Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.

  • gamma: regularization parameter (default : 0.1)

  • ncomps: number of canonical components (default : 10)

  • ...: additional parameters for the kpca function

Details

The kernel version of canonical correlation analysis. Kernel Canonical Correlation Analysis (KCCA) is a non-linear extension of CCA. Given two random variables, KCCA aims at extracting the information which is shared by the two random variables. More precisely given xx and yy the purpose of KCCA is to provide nonlinear mappings f(x)f(x) and g(y)g(y) such that their correlation is maximized.

Returns

An S4 object containing the following slots: - kcor: Correlation coefficients in feature space

  • xcoef: estimated coefficients for the x variables in the feature space

  • ycoef: estimated coefficients for the y variables in the feature space

References

Malte Kuss, Thore Graepel

The Geometry Of Kernel Canonical Correlation Analysis

https://www.microsoft.com/en-us/research/publication/the-geometry-of-kernel-canonical-correlation-analysis/

Author(s)

Alexandros Karatzoglou

alexandros.karatzoglou@ci.tuwien.ac.at

See Also

cancor, kpca, kfa, kha

Examples

## dummy data x <- matrix(rnorm(30),15) y <- matrix(rnorm(30),15) kcca(x,y,ncomps=2)
  • Maintainer: Alexandros Karatzoglou
  • License: GPL-2
  • Last published: 2024-08-13

Useful links