An S4 class containing the output (model) of the ksvm Support Vector Machines function
class
Objects from the Class
Objects can be created by calls of the form new("ksvm", ...)
or by calls to the ksvm function.
Slots
type:: Object of class "character" containing the support vector machine type ("C-svc", "nu-svc", "C-bsvc", "spoc-svc", "one-svc", "eps-svr", "nu-svr", "eps-bsvr")
param:: Object of class "list" containing the Support Vector Machine parameters (C, nu, epsilon)
kernelf:: Object of class "function" containing the kernel function
kpar:: Object of class "list" containing the kernel function parameters (hyperparameters)
kcall:: Object of class "ANY" containing the ksvm function call
scaling:: Object of class "ANY" containing the scaling information performed on the data
terms:: Object of class "ANY" containing the terms representation of the symbolic model used (when using a formula)
xmatrix:: Object of class "input" ("list"
for multiclass problems or `"matrix"` for binary classification and regression problems) containing the support vectors calculated from the data matrix used during computations (possibly scaled and without NA). In the case of multi-class classification each list entry contains the support vectors from each binary classification problem from the one-against-one method.
ymatrix:: Object of class "output"
the response `"matrix"` or `"factor"` or `"vector"` or `"logical"`
fitted:: Object of class "output" with the fitted values, predictions using the training set.
lev:: Object of class "vector" with the levels of the response (in the case of classification)
prob.model:: Object of class "list" with the class prob. model
prior:: Object of class "list" with the prior of the training set
nclass:: Object of class "numeric" containing the number of classes (in the case of classification)
alpha:: Object of class "listI" containing the resulting alpha vector ("list" or "matrix" in case of multiclass classification) (support vectors)
coef:: Object of class "ANY" containing the resulting coefficients
alphaindex:: Object of class "list" containing
b:: Object of class "numeric" containing the resulting offset
SVindex:: Object of class "vector" containing the indexes of the support vectors
nSV:: Object of class "numeric" containing the number of support vectors
obj:: Object of class vector containing the value of the objective function. When using one-against-one in multiclass classification this is a vector.
error:: Object of class "numeric" containing the training error
cross:: Object of class "numeric" containing the cross-validation error
n.action:: Object of class "ANY" containing the action performed for NA
Methods
SVindex: signature(object = "ksvm"): return the indexes of support vectors
alpha: signature(object = "ksvm"): returns the complete 5 alpha vector (wit zero values)
alphaindex: signature(object = "ksvm"): returns the indexes of non-zero alphas (support vectors)
cross: signature(object = "ksvm"): returns the cross-validation error
error: signature(object = "ksvm"): returns the training error
obj: signature(object = "ksvm"): returns the value of the objective function
fitted: signature(object = "vm"): returns the fitted values (predict on training set)
kernelf: signature(object = "ksvm"): returns the kernel function
kpar: signature(object = "ksvm"): returns the kernel parameters (hyperparameters)
lev: signature(object = "ksvm"): returns the levels in case of classification
prob.model: signature(object="ksvm"): returns class prob. model values
param: signature(object="ksvm"): returns the parameters of the SVM in a list (C, epsilon, nu etc.)
prior: signature(object="ksvm"): returns the prior of the training set
kcall: signature(object="ksvm"): returns the ksvm function call
scaling: signature(object = "ksvm"): returns the scaling values
show: signature(object = "ksvm"): prints the object information
type: signature(object = "ksvm"): returns the problem type
xmatrix: signature(object = "ksvm"): returns the data matrix used
ymatrix: signature(object = "ksvm"): returns the response vector
## simple example using the promotergene data setdata(promotergene)## train a support vector machinegene <- ksvm(Class~.,data=promotergene,kernel="rbfdot", kpar=list(sigma=0.015),C=50,cross=4)gene
# the kernel functionkernelf(gene)# the alpha valuesalpha(gene)# the coefficientscoef(gene)# the fitted valuesfitted(gene)# the cross validation errorcross(gene)