onlearn-class function

Class "onlearn"

Class "onlearn"

The class of objects used by the Kernel-based Online learning algorithms class

Objects from the Class

Objects can be created by calls of the form new("onlearn", ...). or by calls to the function inlearn.

Slots

  • kernelf:: Object of class "function" containing the used kernel function
  • buffer:: Object of class "numeric" containing the size of the buffer
  • kpar:: Object of class "list" containing the hyperparameters of the kernel function.
  • xmatrix:: Object of class "matrix" containing the data points (similar to support vectors)
  • fit:: Object of class "numeric" containing the decision function value of the last data point
  • onstart:: Object of class "numeric" used for indexing
  • onstop:: Object of class "numeric" used for indexing
  • alpha:: Object of class "ANY" containing the model parameters
  • rho:: Object of class "numeric" containing model parameter
  • b:: Object of class "numeric" containing the offset
  • pattern:: Object of class "factor" used for dealing with factors
  • type:: Object of class "character" containing the problem type (classification, regression, or novelty

Methods

  • alpha: signature(object = "onlearn"): returns the model parameters
  • b: signature(object = "onlearn"): returns the offset
  • buffer: signature(object = "onlearn"): returns the buffer size
  • fit: signature(object = "onlearn"): returns the last decision function value
  • kernelf: signature(object = "onlearn"): return the kernel function used
  • kpar: signature(object = "onlearn"): returns the hyper-parameters used
  • onlearn: signature(obj = "onlearn"): the learning function
  • predict: signature(object = "onlearn"): the predict function
  • rho: signature(object = "onlearn"): returns model parameter
  • show: signature(object = "onlearn"): show function
  • type: signature(object = "onlearn"): returns the type of problem
  • xmatrix: signature(object = "onlearn"): returns the stored data points

Author(s)

Alexandros Karatzoglou

alexandros.karatzoglou@ci.tuwien.ac.at

See Also

onlearn, inlearn

Examples

## create toy data set x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2)) y <- matrix(c(rep(1,50),rep(-1,50)),,1) ## initialize onlearn object on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2), type="classification") ## learn one data point at the time for(i in sample(1:100,100)) on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1) sign(predict(on,x))
  • Maintainer: Alexandros Karatzoglou
  • License: GPL-2
  • Last published: 2024-08-13

Useful links