Class "onlearn"
The class of objects used by the Kernel-based Online learning algorithms class
Objects can be created by calls of the form new("onlearn", ...)
. or by calls to the function inlearn
.
kernelf
:: Object of class "function"
containing the used kernel functionbuffer
:: Object of class "numeric"
containing the size of the bufferkpar
:: Object of class "list"
containing the hyperparameters of the kernel function.xmatrix
:: Object of class "matrix"
containing the data points (similar to support vectors)fit
:: Object of class "numeric"
containing the decision function value of the last data pointonstart
:: Object of class "numeric"
used for indexingonstop
:: Object of class "numeric"
used for indexingalpha
:: Object of class "ANY"
containing the model parametersrho
:: Object of class "numeric"
containing model parameterb
:: Object of class "numeric"
containing the offsetpattern
:: Object of class "factor"
used for dealing with factorstype
:: Object of class "character"
containing the problem type (classification, regression, or noveltysignature(object = "onlearn")
: returns the model parameterssignature(object = "onlearn")
: returns the offsetsignature(object = "onlearn")
: returns the buffer sizesignature(object = "onlearn")
: returns the last decision function valuesignature(object = "onlearn")
: return the kernel function usedsignature(object = "onlearn")
: returns the hyper-parameters usedsignature(obj = "onlearn")
: the learning functionsignature(object = "onlearn")
: the predict functionsignature(object = "onlearn")
: returns model parametersignature(object = "onlearn")
: show functionsignature(object = "onlearn")
: returns the type of problemsignature(object = "onlearn")
: returns the stored data pointsAlexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
onlearn
, inlearn
## create toy data set x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2)) y <- matrix(c(rep(1,50),rep(-1,50)),,1) ## initialize onlearn object on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2), type="classification") ## learn one data point at the time for(i in sample(1:100,100)) on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1) sign(predict(on,x))
Useful links