predict.gausspr function

predict method for Gaussian Processes object

predict method for Gaussian Processes object

Prediction of test data using Gaussian Processes

## S4 method for signature 'gausspr' predict(object, newdata, type = "response", coupler = "minpair")

Arguments

  • object: an S4 object of class gausspr created by the gausspr function

  • newdata: a data frame or matrix containing new data

  • type: one of response, probabilities

    indicating the type of output: predicted values or matrix of class probabilities

  • coupler: Coupling method used in the multiclass case, can be one of minpair or pkpd (see reference for more details).

Returns

  • response: predicted classes (the classes with majority vote) or the response value in regression.

  • probabilities: matrix of class probabilities (one column for each class and one row for each input).

References

Author(s)

Alexandros Karatzoglou

alexandros.karatzoglou@ci.tuwien.ac.at

Examples

## example using the promotergene data set data(promotergene) ## create test and training set ind <- sample(1:dim(promotergene)[1],20) genetrain <- promotergene[-ind, ] genetest <- promotergene[ind, ] ## train a support vector machine gene <- gausspr(Class~.,data=genetrain,kernel="rbfdot", kpar=list(sigma=0.015)) gene ## predict gene type probabilities on the test set genetype <- predict(gene,genetest,type="probabilities") genetype
  • Maintainer: Alexandros Karatzoglou
  • License: GPL-2
  • Last published: 2024-08-13

Useful links