kerntools1.2.0 package

Kernel Functions and Tools for Machine Learning Applications

Acc_rnd

Accuracy of a random model

Acc

Accuracy

heatK

Kernel matrix heatmap

histK

Kernel matrix histogram

Jaccard

Kernels for sets

Kendall

Kendall's tau kernel

kerntools-package

kerntools: Kernel Functions and Tools for Machine Learning Application...

kPCA_arrows

Plot the original variables' contribution to a PCA plot

Normal_CI

Confidence Interval using Normal Approximation

desparsify

This function deletes those columns and/or rows in a matrix/data.frame...

cosNorm

Cosine normalization of a kernel matrix

cosnormX

Cosine normalization of a matrix

aggregate_imp

Aggregate importances

Boots_CI

Confidence Interval using Bootstrap

BrayCurtis

Kernels for count data

centerK

Centering a kernel matrix

centerX

Centering a squared matrix by row or column

Chi2

Chi-squared kernel

cLinear

Compositional kernels

Dirac

Kernels for categorical variables

dummy_data

Convert categorical data to dummies.

dummy_var

Levels per factor variable

estimate_gamma

Gamma hyperparameter estimation (RBF kernel)

F1

F1 score

Frobenius

Frobenius kernel

frobNorm

Frobenius normalization

nmse

NMSE (Normalized Mean Squared Error)

kPCA_imp

Contributions of the variables to the Principal Components ("loadings"...

kPCA

Kernel PCA

KTA

Kernel-target alignment

Laplace

Laplacian kernel

Linear

Linear kernel

minmax

Minmax normalization

MKC

Multiple Kernel (Matrices) Combination

plotImp

Importance barplot

Prec

Precision or PPV

Procrustes

Procrustes Analysis

RBF

Gaussian RBF (Radial Basis Function) kernel

Rec

Recall or Sensitivity or TPR

simK

Kernel matrix similarity

Spe

Specificity or TNR

Spectrum

Spectrum kernel

svm_imp

SVM feature importance

TSS

Total Sum Scaling

vonNeumann

Von Neumann entropy

Kernel functions for diverse types of data (including, but not restricted to: nonnegative and real vectors, real matrices, categorical and ordinal variables, sets, strings), plus other utilities like kernel similarity, kernel Principal Components Analysis (PCA) and features' importance for Support Vector Machines (SVMs), which expand other 'R' packages like 'kernlab'.

  • Maintainer: Elies Ramon
  • License: GPL (>= 3)
  • Last published: 2025-02-19