klaR1.7-3 package

Classification and Visualization

tritrafo

Barycentric plots

b.scal

Calculation of beta scaling parameters

benchB3

Benchmarking on B3 data

betascale

Scale membership values according to a beta scaling

calc.trans

Calculation of transition probabilities

centerlines

Lines from classborders to the center

classscatter

Classification scatterplot matrix

cond.index

Calculation of Condition Indices for Linear Regression

corclust

Function to identify groups of highly correlated variables for removin...

cvtree

Extracts variable cluster IDs

distmirr

Internal function to convert a distance structure to a matrix

dkernel

Estimate density of a given kernel

dmvnorm

Density of a Multivariate Normal Distribution

drawparti

Plotting the 2-d partitions of classification methods

e.scal

Function to calculate e- or softmax scaled membership values

EDAM

Computation of an Eight Direction Arranged Map

errormatrix

Tabulation of prediction errors by classes

friedmandata

Friedman's classification benchmark data

greedy.wilks

Stepwise forward variable selection for classification

hmm.sop

Calculation of HMM Sum of Path

kmodes

K-Modes Clustering

loclda

Localized Linear Discriminant Analysis (LocLDA)

locpvs

Pairwise variable selection for classification in local models

meclight

Minimal Error Classification

NaiveBayes

Naive Bayes Classifier

nm

Nearest Mean Classification

partimat

Plotting the 2-d partitions of classification methods

plineplot

Plotting marginal posterior class probabilities

plot.NaiveBayes

Naive Bayes Plot

plot.woe

Plot information values

predict.loclda

Localized Linear Discriminant Analysis (LocLDA)

predict.locpvs

predict method for locpvs objects

predict.meclight

Prediction of Minimal Error Classification

predict.NaiveBayes

Naive Bayes Classifier

predict.pvs

predict method for pvs objects

predict.rda

Regularized Discriminant Analysis (RDA)

predict.sknn

Simple k Nearest Neighbours Classification

predict.svmlight

Interface to SVMlight

predict.woe

Weights of evidence

pvs

Pairwise variable selection for classification

quadplot

Plotting of 4 dimensional membership representation simplex

quadtrafo

Transforming of 4 dimensional values in a barycentric coordinate syste...

rda

Regularized Discriminant Analysis (RDA)

rerange

Linear transformation of data

shardsplot

Plotting Eight Direction Arranged Maps or Self-Organizing Maps

sknn

Simple k nearest Neighbours

stepclass

Stepwise variable selection for classification

svmlight

Interface to SVMlight

TopoS

Computation of criterion S of a visualization

triframe

Barycentric plots

trigrid

Barycentric plots

triperplines

Barycentric plots

triplot

Barycentric plots

tripoints

Barycentric plots

ucpm

Uschi's classification performance measures

woe

Weights of evidence

xtractvars

Variable clustering based variable selection

Miscellaneous functions for classification and visualization, e.g. regularized discriminant analysis, sknn() kernel-density naive Bayes, an interface to 'svmlight' and stepclass() wrapper variable selection for supervised classification, partimat() visualization of classification rules and shardsplot() of cluster results as well as kmodes() clustering for categorical data, corclust() variable clustering, variable extraction from different variable clustering models and weight of evidence preprocessing.