Add non-linear constraints to latent variable model
Add non-linear constraints to latent variable model
## Default S3 replacement method:constrain(x,par,args,endogenous=TRUE,...)<- value
## S3 replacement method for class 'multigroup'constrain(x,par,k=1,...)<- value
constraints(object,data=model.frame(object),vcov=object$vcov,level=0.95, p=pars.default(object),k,idx,...)
Arguments
x: lvm-object
...: Additional arguments to be passed to the low level functions
value: Real function taking args as a vector argument
par: Name of new parameter. Alternatively a formula with lhs specifying the new parameter and the rhs defining the names of the parameters or variable names defining the new parameter (overruling the args argument).
args: Vector of variables names or parameter names that are used in defining par
endogenous: TRUE if variable is endogenous (sink node)
k: For multigroup models this argument specifies which group to add/extract the constraint
object: lvm-object
data: Data-row from which possible non-linear constraints should be calculated
vcov: Variance matrix of parameter estimates
level: Level of confidence limits
p: Parameter vector
idx: Index indicating which constraints to extract
Returns
A lvm object.
Details
Add non-linear parameter constraints as well as non-linear associations between covariates and latent or observed variables in the model (non-linear regression).
As an example we will specify the follow multiple regression model:
E(Y∣X1,X2)=α+β1X1+β2X2V(Y∣X1,X2)=v
which is defined (with the appropiate parameter labels) as
A subset of the arguments args can be covariates in the model, allowing the specification of non-linear regression models. As an example the non-linear regression model
E(Y∣X)=ν+Φ(α+βX)
where Φ denotes the standard normal cumulative distribution function, can be defined as
m <- lvm(y ~ f(x,0)) # No linear effect of x
Next we add three new parameters using the parameter assigment function:
parameter(m) <- ~nu+alpha+beta
The intercept of Y is defined as mu
intercept(m) <- y ~ f(mu)
And finally the newly added intercept parameter mu is defined as the appropiate non-linear function of α, ν and β:
constrain(m, mu ~ x + alpha + nu) <- function(x) pnorm(x[1]*x[2])+x[3]
The constraints function can be used to show the estimated non-linear parameter constraints of an estimated model object (lvmfit or multigroupfit). Calling constrain with no additional arguments beyound x will return a list of the functions and parameter names defining the non-linear restrictions.
The gradient function can optionally be added as an attribute grad to the return value of the function defined by value. In this case the analytical derivatives will be calculated via the chain rule when evaluating the corresponding score function of the log-likelihood. If the gradient attribute is omitted the chain rule will be applied on a numeric approximation of the gradient.
Examples
################################# Non-linear parameter constraints 1##############################m <- lvm(y ~ f(x1,gamma)+f(x2,beta))covariance(m)<- y ~ f(v)d <- sim(m,100)m1 <- m; constrain(m1,beta ~ v)<-function(x) x^2## Define slope of x2 to be the square of the residual variance of y## Estimate both restricted and unrestricted modele <- estimate(m,d,control=list(method="NR"))e1 <- estimate(m1,d)p1 <- coef(e1)p1 <- c(p1[1:2],p1[3]^2,p1[3])## Likelihood of unrestricted model evaluated in MLE of restricted modellogLik(e,p1)## Likelihood of restricted model (MLE)logLik(e1)################################# Non-linear regression################################ Simulate datam <- lvm(c(y1,y2)~f(x,0)+f(eta,1))latent(m)<-~eta
covariance(m,~y1+y2)<-"v"intercept(m,~y1+y2)<-"mu"covariance(m,~eta)<-"zeta"intercept(m,~eta)<-0set.seed(1)d <- sim(m,100,p=c(v=0.01,zeta=0.01))[,manifest(m)]d <- transform(d, y1=y1+2*pnorm(2*x), y2=y2+2*pnorm(2*x))## Specify model and estimate parametersconstrain(m, mu ~ x + alpha + nu + gamma)<-function(x) x[4]*pnorm(x[3]+x[1]*x[2])## Reduce Ex.Timingse <- estimate(m,d,control=list(trace=1,constrain=TRUE))constraints(e,data=d)## Plot model-fitplot(y1~x,d,pch=16); points(y2~x,d,pch=16,col="gray")x0 <- seq(-4,4,length.out=100)lines(x0,coef(e)["nu"]+ coef(e)["gamma"]*pnorm(coef(e)["alpha"]*x0))################################# Multigroup model################################# Define two modelsm1 <- lvm(y ~ f(x,beta)+f(z,beta2))m2 <- lvm(y ~ f(x,psi)+ z)### And simulate data from themd1 <- sim(m1,500)d2 <- sim(m2,500)### Add 'non'-linear parameter constraintconstrain(m2,psi ~ beta2)<-function(x) x
## Add parameter beta2 to model 2, now beta2 exists in both modelsparameter(m2)<-~ beta2
ee <- estimate(list(m1,m2),list(d1,d2),control=list(method="NR"))summary(ee)m3 <- lvm(y ~ f(x,beta)+f(z,beta2))m4 <- lvm(y ~ f(x,beta2)+ z)e2 <- estimate(list(m3,m4),list(d1,d2),control=list(method="NR"))e2