intercept function

Fix mean parameters in 'lvm'-object

Fix mean parameters in 'lvm'-object

Define linear constraints on intercept parameters in a lvm-object.

## S3 replacement method for class 'lvm' intercept(object, vars, ...) <- value

Arguments

  • object: lvm-object
  • ...: Additional arguments
  • vars: character vector of variable names
  • value: Vector (or list) of parameter values or labels (numeric or character) or a formula defining the linear constraints (see also the regression or covariance methods).

Returns

A lvm-object

Details

The intercept function is used to specify linear constraints on the intercept parameters of a latent variable model. As an example we look at the multivariate regression model

E(Y1X)=α1+β1X E(Y_1|X) = \alpha_1 + \beta_1 X E(Y2X)=α2+β2X E(Y_2|X) = \alpha_2 + \beta_2X

defined by the call

m <- lvm(c(y1,y2) ~ x)

To fix α1=α2\alpha_1=\alpha_2 we call

intercept(m) <- c(y1,y2) ~ f(mu)

Fixed parameters can be reset by fixing them to NA. For instance to free the parameter restriction of Y1Y_1 and at the same time fixing α2=2\alpha_2=2, we call

intercept(m, ~y1+y2) <- list(NA,2)

Calling intercept with no additional arguments will return the current intercept restrictions of the lvm-object.

Note

Variables will be added to the model if not already present.

Examples

## A multivariate model m <- lvm(c(y1,y2) ~ f(x1,beta)+x2) regression(m) <- y3 ~ f(x1,beta) intercept(m) <- y1 ~ f(mu) intercept(m, ~y2+y3) <- list(2,"mu") intercept(m) ## Examine intercepts of model (NA translates to free/unique paramete##r)

See Also

covariance<-, regression<-, constrain<-, parameter<-, latent<-, cancel<-, kill<-

Author(s)

Klaus K. Holst

  • Maintainer: Klaus K. Holst
  • License: GPL-3
  • Last published: 2025-01-12