Define linear constraints on intercept parameters in a lvm-object.
## S3 replacement method for class 'lvm'intercept(object, vars,...)<- value
Arguments
object: lvm-object
...: Additional arguments
vars: character vector of variable names
value: Vector (or list) of parameter values or labels (numeric or character) or a formula defining the linear constraints (see also the regression or covariance methods).
Returns
A lvm-object
Details
The intercept function is used to specify linear constraints on the intercept parameters of a latent variable model. As an example we look at the multivariate regression model
E(Y1∣X)=α1+β1XE(Y2∣X)=α2+β2X
defined by the call
m <- lvm(c(y1,y2) ~ x)
To fix α1=α2 we call
intercept(m) <- c(y1,y2) ~ f(mu)
Fixed parameters can be reset by fixing them to NA. For instance to free the parameter restriction of Y1 and at the same time fixing α2=2, we call
intercept(m, ~y1+y2) <- list(NA,2)
Calling intercept with no additional arguments will return the current intercept restrictions of the lvm-object.
Note
Variables will be added to the model if not already present.
Examples
## A multivariate modelm <- lvm(c(y1,y2)~ f(x1,beta)+x2)regression(m)<- y3 ~ f(x1,beta)intercept(m)<- y1 ~ f(mu)intercept(m,~y2+y3)<- list(2,"mu")intercept(m)## Examine intercepts of model (NA translates to free/unique paramete##r)