modelsearch(x, k =1, dir ="forward", type ="all",...)
Arguments
x: lvmfit-object
k: Number of parameters to test simultaneously. For equivalence
the number of additional associations to be added instead of rel.
dir: Direction to do model search. "forward" := add associations/arrows to model/graph (score tests), "backward" := remove associations/arrows from model/graph (wald test)
type: If equal to 'correlation' only consider score tests for covariance parameters. If equal to 'regression' go through direct effects only (default 'all' is to do both)
...: Additional arguments to be passed to the low level functions
Returns
Matrix of test-statistics and p-values
Examples
m <- lvm();regression(m)<- c(y1,y2,y3)~ eta; latent(m)<-~eta
regression(m)<- eta ~ x
m0 <- m; regression(m0)<- y2 ~ x
dd <- sim(m0,100)[,manifest(m0)]e <- estimate(m,dd);modelsearch(e,messages=0)modelsearch(e,messages=0,type="cor")