mvnmix function

Estimate mixture latent variable model

Estimate mixture latent variable model

mvnmix( data, k = 2, theta, steps = 500, tol = 1e-16, lambda = 0, mu = NULL, silent = TRUE, extra = FALSE, n.start = 1, init = "kmpp", ... )

Arguments

  • data: data.frame
  • k: Number of mixture components
  • theta: Optional starting values
  • steps: Maximum number of iterations
  • tol: Convergence tolerance of EM algorithm
  • lambda: Regularisation parameter. Added to diagonal of covariance matrix (to avoid singularities)
  • mu: Initial centres (if unspecified random centres will be chosen)
  • silent: Turn on/off output messages
  • extra: Extra debug information
  • n.start: Number of restarts
  • init: Function to choose initial centres
  • ...: Additional arguments parsed to lower-level functions

Returns

A mixture object

Details

Estimate parameters in a mixture of latent variable models via the EM algorithm.

Examples

data(faithful) set.seed(1) M1 <- mvnmix(faithful[,"waiting",drop=FALSE],k=2) M2 <- mvnmix(faithful,k=2) if (interactive()) { par(mfrow=c(2,1)) plot(M1,col=c("orange","blue"),ylim=c(0,0.05)) plot(M2,col=c("orange","blue")) }

See Also

mixture

Author(s)

Klaus K. Holst

  • Maintainer: Klaus K. Holst
  • License: GPL-3
  • Last published: 2025-01-12