Estimate mixture latent variable model
mvnmix( data, k = 2, theta, steps = 500, tol = 1e-16, lambda = 0, mu = NULL, silent = TRUE, extra = FALSE, n.start = 1, init = "kmpp", ... )
data
: data.frame
k
: Number of mixture componentstheta
: Optional starting valuessteps
: Maximum number of iterationstol
: Convergence tolerance of EM algorithmlambda
: Regularisation parameter. Added to diagonal of covariance matrix (to avoid singularities)mu
: Initial centres (if unspecified random centres will be chosen)silent
: Turn on/off output messagesextra
: Extra debug informationn.start
: Number of restartsinit
: Function to choose initial centres...
: Additional arguments parsed to lower-level functionsA mixture
object
Estimate parameters in a mixture of latent variable models via the EM algorithm.
data(faithful) set.seed(1) M1 <- mvnmix(faithful[,"waiting",drop=FALSE],k=2) M2 <- mvnmix(faithful,k=2) if (interactive()) { par(mfrow=c(2,1)) plot(M1,col=c("orange","blue"),ylim=c(0,0.05)) plot(M2,col=c("orange","blue")) }
mixture
Klaus K. Holst