Plot regression lines
Plot regression line (with interactions) and partial residuals.
plotConf( model, var1 = NULL, var2 = NULL, data = NULL, ci.lty = 0, ci = TRUE, level = 0.95, pch = 16, lty = 1, lwd = 2, npoints = 100, xlim, col = NULL, colpt, alpha = 0.5, cex = 1, delta = 0.07, centermark = 0.03, jitter = 0.2, cidiff = FALSE, mean = TRUE, legend = ifelse(is.null(var1), FALSE, "topright"), trans = function(x) { x }, partres = inherits(model, "lm"), partse = FALSE, labels, vcov, predictfun, plot = TRUE, new = TRUE, ... )
model
: Model object (e.g. lm
)var1
: predictor (Continuous or factor)var2
: Factor that interacts with var1
data
: data.frame to use for prediction (model.frame is used as default)ci.lty
: Line type for confidence limitsci
: Boolean indicating wether to draw pointwise 95% confidence limitslevel
: Level of confidence limits (default 95%)pch
: Point type for partial residualslty
: Line type for estimated regression lineslwd
: Line width for regression linesnpoints
: Number of points used to plot curvesxlim
: Range of x axiscol
: Color (for each level in var2
)colpt
: Color of partial residual pointsalpha
: Alpha levelcex
: Point sizedelta
: For categorical var1
centermark
: For categorical var1
jitter
: For categorical var1
cidiff
: For categorical var1
mean
: For categorical var1
legend
: Boolean (add legend)trans
: Transform estimates (e.g. exponential)partres
: Boolean indicating whether to plot partial residualspartse
: .labels
: Optional labels of var2
vcov
: Optional variance estimatespredictfun
: Optional predict-function used to calculate confidence limits and predictionsplot
: If FALSE return only predictions and confidence bandsnew
: If FALSE add to current plot...
: additional arguments to lower level functionslist with following members: - x: Variable on the x-axis (var1
)
y: Variable on the y-axis (partial residuals)
predict: Matrix with confidence limits and predicted values
n <- 100 x0 <- rnorm(n) x1 <- seq(-3,3, length.out=n) x2 <- factor(rep(c(1,2),each=n/2), labels=c("A","B")) y <- 5 + 2*x0 + 0.5*x1 + -1*(x2=="B")*x1 + 0.5*(x2=="B") + rnorm(n, sd=0.25) dd <- data.frame(y=y, x1=x1, x2=x2) lm0 <- lm(y ~ x0 + x1*x2, dd) plotConf(lm0, var1="x1", var2="x2") abline(a=5,b=0.5,col="red") abline(a=5.5,b=-0.5,col="red") ### points(5+0.5*x1 -1*(x2=="B")*x1 + 0.5*(x2=="B") ~ x1, cex=2) data(iris) l <- lm(Sepal.Length ~ Sepal.Width*Species,iris) plotConf(l,var2="Species") plotConf(l,var1="Sepal.Width",var2="Species") ## Not run: ## lme4 model dd$Id <- rbinom(n, size = 3, prob = 0.3) lmer0 <- lme4::lmer(y ~ x0 + x1*x2 + (1|Id), dd) plotConf(lmer0, var1="x1", var2="x2") ## End(Not run)
termplot
Klaus K. Holst