sim.default function

Monte Carlo simulation

Monte Carlo simulation

Applies a function repeatedly for a specified number of replications or over a list/data.frame with plot and summary methods for summarizing the Monte Carlo experiment. Can be parallelized via the future package (use the future::plan function).

## Default S3 method: sim( x = NULL, R = 100, f = NULL, colnames = NULL, seed = NULL, args = list(), iter = FALSE, mc.cores, progressr.message = NULL, ... )

Arguments

  • x: function or 'sim' object
  • R: Number of replications or data.frame with parameters
  • f: Optional function (i.e., if x is a matrix)
  • colnames: Optional column names
  • seed: (optional) Seed (needed with cl=TRUE)
  • args: (optional) list of named arguments passed to (mc)mapply
  • iter: If TRUE the iteration number is passed as first argument to (mc)mapply
  • mc.cores: Optional number of cores. Will use parallel::mcmapply instead of future
  • progressr.message: Optional message for the progressr progress-bar
  • ...: Additional arguments to future.apply::future_mapply

Details

To parallelize the calculation use the future::plan function (e.g., future::plan(multisession()) to distribute the calculations over the R replications on all available cores). The output is controlled via the progressr package (e.g., progressr::handlers(global=TRUE) to enable progress information).

Examples

m <- lvm(y~x+e) distribution(m,~y) <- 0 distribution(m,~x) <- uniform.lvm(a=-1.1,b=1.1) transform(m,e~x) <- function(x) (1*x^4)*rnorm(length(x),sd=1) onerun <- function(iter=NULL,...,n=2e3,b0=1,idx=2) { d <- sim(m,n,p=c("y~x"=b0)) l <- lm(y~x,d) res <- c(coef(summary(l))[idx,1:2], confint(l)[idx,], estimate(l,only.coef=TRUE)[idx,2:4]) names(res) <- c("Estimate","Model.se","Model.lo","Model.hi", "Sandwich.se","Sandwich.lo","Sandwich.hi") res } val <- sim(onerun,R=10,b0=1) val val <- sim(val,R=40,b0=1) ## append results summary(val,estimate=c(1,1),confint=c(3,4,6,7),true=c(1,1)) summary(val,estimate=c(1,1),se=c(2,5),names=c("Model","Sandwich")) summary(val,estimate=c(1,1),se=c(2,5),true=c(1,1), names=c("Model","Sandwich"),confint=TRUE) if (interactive()) { plot(val,estimate=1,c(2,5),true=1, names=c("Model","Sandwich"),polygon=FALSE) plot(val,estimate=c(1,1),se=c(2,5),main=NULL, true=c(1,1),names=c("Model","Sandwich"), line.lwd=1,col=c("gray20","gray60"), rug=FALSE) plot(val,estimate=c(1,1),se=c(2,5),true=c(1,1), names=c("Model","Sandwich")) } f <- function(a=1, b=1) { rep(a*b, 5) } R <- Expand(a=1:3, b=1:3) sim(f, R) sim(function(a,b) f(a,b), 3, args=c(a=5,b=5)) sim(function(iter=1,a=5,b=5) iter*f(a,b), iter=TRUE, R=5)

See Also

summary.sim plot.sim print.sim

  • Maintainer: Klaus K. Holst
  • License: GPL-3
  • Last published: 2025-01-12