twostageCV function

Cross-validated two-stage estimator

Cross-validated two-stage estimator

Cross-validated two-stage estimator for non-linear SEM

twostageCV( model1, model2, data, control1 = list(trace = 0), control2 = list(trace = 0), knots.boundary, nmix = 1:4, df = 1:9, fix = TRUE, std.err = TRUE, nfolds = 5, rep = 1, messages = 0, ... )

Arguments

  • model1: model 1 (exposure measurement error model)
  • model2: model 2
  • data: data.frame
  • control1: optimization parameters for model 1
  • control2: optimization parameters for model 1
  • knots.boundary: boundary points for natural cubic spline basis
  • nmix: number of mixture components
  • df: spline degrees of freedom
  • fix: automatically fix parameters for identification (TRUE)
  • std.err: calculation of standard errors (TRUE)
  • nfolds: Number of folds (cross-validation)
  • rep: Number of repeats of cross-validation
  • messages: print information (>0)
  • ...: additional arguments to lower

Examples

## Reduce Ex.Timings##' m1 <- lvm( x1+x2+x3 ~ u, latent= ~u) m2 <- lvm( y ~ 1 ) m <- functional(merge(m1,m2), y ~ u, value=function(x) sin(x)+x) distribution(m, ~u1) <- uniform.lvm(-6,6) d <- sim(m,n=500,seed=1) nonlinear(m2) <- y~u1 if (requireNamespace('mets', quietly=TRUE)) { set.seed(1) val <- twostageCV(m1, m2, data=d, std.err=FALSE, df=2:6, nmix=1:2, nfolds=2) val }
  • Maintainer: Klaus K. Holst
  • License: GPL-3
  • Last published: 2025-01-12