Cross-validated two-stage estimator
Cross-validated two-stage estimator for non-linear SEM
twostageCV( model1, model2, data, control1 = list(trace = 0), control2 = list(trace = 0), knots.boundary, nmix = 1:4, df = 1:9, fix = TRUE, std.err = TRUE, nfolds = 5, rep = 1, messages = 0, ... )
model1
: model 1 (exposure measurement error model)model2
: model 2data
: data.framecontrol1
: optimization parameters for model 1control2
: optimization parameters for model 1knots.boundary
: boundary points for natural cubic spline basisnmix
: number of mixture componentsdf
: spline degrees of freedomfix
: automatically fix parameters for identification (TRUE)std.err
: calculation of standard errors (TRUE)nfolds
: Number of folds (cross-validation)rep
: Number of repeats of cross-validationmessages
: print information (>0)...
: additional arguments to lower## Reduce Ex.Timings##' m1 <- lvm( x1+x2+x3 ~ u, latent= ~u) m2 <- lvm( y ~ 1 ) m <- functional(merge(m1,m2), y ~ u, value=function(x) sin(x)+x) distribution(m, ~u1) <- uniform.lvm(-6,6) d <- sim(m,n=500,seed=1) nonlinear(m2) <- y~u1 if (requireNamespace('mets', quietly=TRUE)) { set.seed(1) val <- twostageCV(m1, m2, data=d, std.err=FALSE, df=2:6, nmix=1:2, nfolds=2) val }