Function to score new data and predict change for each single currency pair
Function to score new data and predict change for each single currency pair
Function is using the latest data from the financial assets indicator pattern and deep learning model. Prediction is a future price change for that asset
symbol: Character symbol of the asset for which the model shall predict
timeframe: Data timeframe e.g. 60 min
path_model: Path where the models are be stored
path_data: Path where the aggregated historical data is stored, if exists in rds format
path_sbxm: Path to the sandbox where file with predicted price should be written (master terminal)
path_sbxs: Path to the sandbox where file with predicted price should be written (slave terminal)
Returns
Function is writing file into Decision Support System folder, mainly file with price change prediction in pips
Details
Performs fresh data reading from the rds file
Examples
# test of function aml_make_model is duplicated herelibrary(dplyr)library(readr)library(lubridate)library(h2o)library(magrittr)library(lazytrade)path_model <- normalizePath(tempdir(),winslash ="/")path_data <- normalizePath(tempdir(),winslash ="/")ind = system.file("extdata","AI_RSIADXUSDJPY60.csv", package ="lazytrade")%>% read_csv(col_names =FALSE)ind$X1 <- ymd_hms(ind$X1)write_csv(ind, file.path(path_data,"AI_RSIADXUSDJPY60.csv"), col_names =FALSE)# add tick data to the foldertick = system.file("extdata","TickSize_AI_RSIADX.csv", package ="lazytrade")%>% read_csv(col_names =FALSE)write_csv(tick, file.path(path_data,"TickSize_AI_RSIADX.csv"), col_names =FALSE)# data transformation using the custom function for one symbolaml_collect_data(indicator_dataset = ind, symbol ='USDJPY', timeframe =60, path_data = path_data)# start h2o engine (using all CPU's by default)h2o.init(nthreads =2)# performing Deep Learning Regression using the custom functionaml_make_model(symbol ='USDJPY', timeframe =60, path_model = path_model, path_data = path_data, force_update=FALSE, num_nn_options =2)path_sbxm <- normalizePath(tempdir(),winslash ="/")path_sbxs <- normalizePath(tempdir(),winslash ="/")# score the latest data to generate predictions for one currency pairaml_score_data(symbol ='USDJPY', timeframe =60, path_model = path_model, path_data = path_data, path_sbxm = path_sbxm, path_sbxs = path_sbxs)# stop h2o engineh2o.shutdown(prompt =FALSE)#set delay to insure h2o unit closes properly before the next testSys.sleep(5)